Search results

1 – 2 of 2
Article
Publication date: 17 May 2021

Subhashree Choudhury and Taraprasanna Dash

Static VAR compensators (SVC) have been recognized to be one of the most important flexible AC transmission systems devices used for mitigating the low-frequency electrochemical…

Abstract

Purpose

Static VAR compensators (SVC) have been recognized to be one of the most important flexible AC transmission systems devices used for mitigating the low-frequency electrochemical oscillations occurring in the system and for reactive power compensation, thereby improving the overall dynamic stability and efficiency of the system. The purpose of this paper is to optimize and dynamically tune the control parameters of the classical proportional integral and derivative (PID) controller of the SVC for a two-machine system by designing a new robust optimization technique.

Design/methodology/approach

The angular speed deviation between the two machines is used as an auxiliary signal to SVC for generation of the required damping output. To justify the efficacy of the system undertaken, a light load fault at time t =1 s is projected to the system. The simulation is carried out in MATLAB/Simulink architecture.

Findings

The proposed technique helps in the enhancement of system efficiency, reliability and controllability and by effectively responding to the non-linearities taking place in a power grid network. The results obtained are indicative of the fact that the proposed modified brain storming optimization (MBSO) technique reduces system disturbances very quickly, increases the system response in terms of better rise time, settling time and peak overshoot and improves the efficiency of the system.

Originality/value

A detailed comparison of the MBSO technique is compared with the conventional brain storming optimization (BSO) and PID technique. Total harmonic distortion through fast Fourier transform is also compiled to prove that the values of the proposed MBSO method found out to be confined well within the prescribed IEEE-514 boundaries.

Article
Publication date: 11 June 2018

Shubhranshu Mohan Parida, Subhashree Choudhury, Pravat Kumar Rout and Sanjeeb Kumar Kar

The purpose of this paper is to propose a novel self-adjusting proportional integral (SA-PI) controller, for controlling the active and reactive power of permanent magnet…

Abstract

Purpose

The purpose of this paper is to propose a novel self-adjusting proportional integral (SA-PI) controller, for controlling the active and reactive power of permanent magnet synchronous generator (PMSG) when subjected to variable wind speed and parameter variations.

Design/methodology/approach

The proportional and integral gains of the proposed SA-PI controller are based on tan-hyperbolic function and adjust themselves automatically within pre-fixed limits according to the error occurring during transient situations.

Findings

The proposed SA-PI controller is able to evade the problems usually encountered while using a constant gain PI controller, such as lack of robustness, adaptability and a wide range of operation. It also damps out system oscillations faster with reduced settling time and fewer overshoots.

Originality/value

Simulation results and comparative studies with conventional PI controller and the differential evolution–optimized PI (DE-PI) controller reveal the effectiveness of the proposed control scheme. MATLAB is used to perform the simulation studies.

Details

World Journal of Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 2 of 2