Search results

1 – 10 of 108
Article
Publication date: 14 November 2016

Jie Ren, Huimin Zhao, Jinchang Ren and Shi Cheng

Effective and robust motion estimation with sub-pixel accuracy is essential in many image processing and computer vision applications. Due to its computational efficiency and…

Abstract

Purpose

Effective and robust motion estimation with sub-pixel accuracy is essential in many image processing and computer vision applications. Due to its computational efficiency and robustness in the presence of intensity changes as well as geometric distortions, phase correlation in the Fourier domain provides an attractive solution for global motion estimation and image registration. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, relevant sub-pixel strategies are categorized into three classes, namely, single-side peak interpolation, dual-side peak interpolation and curve fitting. The well-known images “Barbara” and “Pentagon” were used to evaluate the performance of eight typical methods, in which Gaussian noise was attached in the synthetic data.

Findings

For eight such typical methods, the tests using synthetic data have suggested that considering dual-side peaks in interpolation or fitting helps to produce better results. In addition, dual-side interpolation outperforms curve fitting methods in dealing with noisy samples. Overall, Gaussian-based dual-side interpolation seems the best in the experiments.

Originality/value

Based on the comparisons of eight typical methods, the authors can have a better understanding of the phase correlation for motion estimation. The evaluation can provide useful guidance in this context.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 9 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 April 1990

Don Braggins

New visual inspection techniques overcome the Nyquist limit to provide high precision measurement of component positions.

Abstract

New visual inspection techniques overcome the Nyquist limit to provide high precision measurement of component positions.

Details

Sensor Review, vol. 10 no. 4
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 19 January 2015

B. M. Kumar and M. M. Ratnam

– This paper aims to propose a non-contact method using machine vision for measuring the surface roughness of a rotating workpiece at speeds of up to 4,000 rpm.

1166

Abstract

Purpose

This paper aims to propose a non-contact method using machine vision for measuring the surface roughness of a rotating workpiece at speeds of up to 4,000 rpm.

Design/methodology/approach

A commercial digital single-lens-reflex camera with high shutter speed and backlight was used to capture a silhouette of the rotating workpiece profile. The roughness profile was extracted at sub-pixel accuracy from the captured images using the moment invariant method of edge detection. The average (Ra), root-mean square (Rq) and peak-to-valley (Rt) roughness parameters were measured for ten different specimens at spindle speeds of up to 4,000 rpm. The roughness values measured using the proposed machine vision system were verified using the stylus profilometer.

Findings

The roughness values measured using the proposed method show high correlation (up to 0.997 for Ra) with those determined using the profilometer. The mean differences in Ra, Rq and Rt between the two methods were only 4.66, 3.29 and 3.70 per cent, respectively.

Practical implications

The proposed method has significant potential for application in the in-process roughness measurement and tool condition monitoring from workpiece profile signature during turning, thus, obviating the need to stop the machine.

Originality/value

The machine vision method combined with sub-pixel edge detection has not been applied to measure the roughness of a rotating workpiece.

Details

Sensor Review, vol. 35 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 July 2014

Xin Ye, Jun Gao, Zhijing Zhang, Chao Shao and Guangyuan Shao

The purpose of this paper is to propose a sub-pixel calibration method for a microassembly system with coaxial alignment function (MSCA) because traditional sub-pixel calibration…

Abstract

Purpose

The purpose of this paper is to propose a sub-pixel calibration method for a microassembly system with coaxial alignment function (MSCA) because traditional sub-pixel calibration approaches cannot be used in this system.

Design/methodology/approach

The in-house microassembly system comprises a six degrees of freedom (6-DOF) large motion serial robot with microgrippers, a hexapod 6-DOF precision alignment worktable and a vision system whose optical axis of the microscope is parallel with the horizontal plane. A prism with special coating is fixed in front of the objective lens; thus, two parts’ Figures, namely the images of target and base part, can be acquired simultaneously. The relative discrepancy between the two parts can be calculated from image plane coordinate instead of calculating space transformation matrix. Therefore, the traditional calibration method cannot be applied in this microassembly system. An improved calibration method including the check corner detection solves the distortion coefficient conversely. This new way can detect the corner at sub-pixel accuracy. The experiment proves that the assembly accuracy of the coaxial microassembly system which has been calibrated by the new method can reach micrometer level.

Findings

The calibration results indicate that solving the distortion conversely could improve the assembly accuracy of MSCA.

Originality/value

The paper provides certain calibration methodological guidelines for devices with 2 dimensions or 2.5 dimensions, such as microelectromechanical systems devices, using MSCA.

Details

Assembly Automation, vol. 34 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 10 October 2007

Gang Wang, Zhi‐feng Zhang, Yu‐jun Huang, Ying‐lu Zhao, Liang Xiao and An‐zhi He

This paper aims to provide an improved multifractal method to extract the pavement cracks in the complicated background. Furthermore, the pavement surface images with or without…

2045

Abstract

Purpose

This paper aims to provide an improved multifractal method to extract the pavement cracks in the complicated background. Furthermore, the pavement surface images with or without crack can also be distinguished by this method.

Design/methodology/approach

The framework of analyzing the image singularity is based on the sub‐pixel multifractal measure (SPMM). Performing the SPMM can give the sub‐pixel local distribution of the image gradient and a more precise singularity exponent distribution in the image. Meantime, using the singularity exponents and the most singular manifold (MSM), the image can be decomposed into a series of sets with different statistical and physical properties automatically and easily. One can extract the cracks according to the MSM.

Findings

The example shows that the physical and geometrical properties of the pavement images can be obtained by analyzing the distribution of singularity exponents and the greatest singularity exponent. The simulation results show that the SPMM has higher quality factor in the image edge detection. And the MSM detected this way reflects the most important information of the image.

Originality/value

Performing the SPMM can give a more precise singularity exponent distribution in the image.

Details

Engineering Computations, vol. 24 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2002

Q.M. Jonathan Wu, Min‐Fan Ricky Lee and Clarence W. de Silva

This paper focuses on the design of an inexpensive and accurate range scanner for automatic acquisition of a CAD model of a manufactured part by using two‐dimensional images to…

Abstract

This paper focuses on the design of an inexpensive and accurate range scanner for automatic acquisition of a CAD model of a manufactured part by using two‐dimensional images to determine a digitized three‐dimensional shape. In the developed approach, the object is passed at a speed of 4 cm/s through a single linear laser stripe and forty continuous images are captured into the frame memory of the host computer for subsequent processing. A major problem that is encountered in the design of laser stripe scanner is the specula reflection, which can be mitigated by the developed approach. Six center‐locating algorithms are described, which are central to the developed approach. These algorithms are able to achieve sub‐pixel accuracy. The center of mass algorithm that uses three points, gives the best repeatability over the other algorithms. The center of mass algorithm that uses intensity threshold, provides the best linearity over the other algorithms.

Details

Sensor Review, vol. 22 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 4 November 2019

Chern Sheng Lin, Chang-Yu Hung, Chung Ting Chen, Ke-Chun Lin and Kuo Liang Huang

This study aims to present an optical alignment and compensation control of die bonder for chips containing through-silicon vias and develop three-dimensional integrated circuit…

Abstract

Purpose

This study aims to present an optical alignment and compensation control of die bonder for chips containing through-silicon vias and develop three-dimensional integrated circuit stacked packaging for compact size and multifunction.

Design/methodology/approach

The machine vision, optical alignment method and sub-pixel technology in dynamic imaging condition are used. Through a comparison of reference image, the chip alignment calibration can improve machine accuracy and stability.

Findings

According to the experimental data and preliminary results of the analysis, accuracy can be achieved within the desired range, and the accuracy is much better than traditional die bonder equipment. The results help further research in die bonder for chips containing through-silicon vias.

Originality/value

In subsequent testing of the chip, the machine can simultaneously test multiple chips to save test time and increase productivity.

Article
Publication date: 28 November 2023

Xindang He, Run Zhou, Zheyuan Liu, Suliang Yang, Ke Chen and Lei Li

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Abstract

Purpose

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Design/methodology/approach

The approach of this review paper is to introduce the research pertaining to DIC. It comprehensively covers crucial facets including its principles, historical development, core challenges, current research status and practical applications. Additionally, it delves into unresolved issues and outlines future research objectives.

Findings

The findings of this review encompass essential aspects of DIC, including core issues like the subpixel registration algorithm, camera calibration, measurement of surface deformation in 3D complex structures and applications in ultra-high-temperature settings. Additionally, the review presents the prevailing strategies for addressing these challenges, the most recent advancements in DIC applications across quasi-static, dynamic, ultra-high-temperature, large-scale and micro-scale engineering domains, along with key directions for future research endeavors.

Originality/value

This review holds a substantial value as it furnishes a comprehensive and in-depth introduction to DIC, while also spotlighting its prospective applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 10 December 2021

Pingan Zhu, Chao Zhang and Jun Zou

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the…

Abstract

Purpose

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the area of manufacturing.

Design/methodology/approach

No methodology was used because the paper is a review article.

Findings

no fundings.

Originality/value

Herein, the historical development, main strengths and measurement setup of DIC are introduced. Subsequently, the basic principles of the DIC technique are outlined in detail. The analysis of measurement accuracy associated with experimental factors and correlation algorithms is discussed and some useful recommendations for reducing measurement errors are also offered. Then, the utilization of DIC in different manufacturing fields (e.g. cutting, welding, forming and additive manufacturing) is summarized. Finally, the current challenges and prospects of DIC in intelligent manufacturing are discussed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 27 May 2014

Luigi Barazzetti

– The purpose of this paper is to present a new multi-image registration methodology that is able to align a set of hand-held bracketed shots.

Abstract

Purpose

The purpose of this paper is to present a new multi-image registration methodology that is able to align a set of hand-held bracketed shots.

Design/methodology/approach

The procedure is a two-step algorithm where corresponding multi-image points are automatically extracted from the bracketed image sequence and a least squares adjustment recovers transformation parameters.

Findings

The images can be processed with high dynamic range algorithms to combine multiple low dynamic range pictures into a single mosaic with a superior radiometric quality.

Originality/value

Simulated and real examples are illustrated to prove the effectiveness of the developed affine-based procedure.

Details

International Journal of Pervasive Computing and Communications, vol. 10 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 108