Search results

1 – 10 of over 2000
Article
Publication date: 9 January 2018

Kurian J. Vachaparambil, Gustaf Mårtensson and Lars Essén

The purpose of the paper is to develop a methodology to characterize the rheological behaviour of macroscopic non-Brownian suspensions, like solder paste, based on microstructural…

Abstract

Purpose

The purpose of the paper is to develop a methodology to characterize the rheological behaviour of macroscopic non-Brownian suspensions, like solder paste, based on microstructural evolution.

Design/methodology/approach

A structure-based kinetics model, whose parameters are derived analytically based on assumptions valid for any macroscopic suspension, is developed to describe the rheological behaviour of a given fluid. The values of the parameters are then determined based on experiments conducted at a constant shear rate. The parameter values, obtained from the model, are then adjusted using an optimization algorithm using the mean deviation from experiments as the cost function to replicate the measured rheology. A commercially available solder paste is used as the test fluid for the proposed method.

Findings

The initial parameter values obtained through the analytical model indicates a structural breakdown that is much slower than observations. But optimizing the parameter values, especially the ones associated with the structural breakdown, replicates the thixotropic behaviour of the solder paste reasonably well, but it fails to capture the structure build-up during the three interval thixotropy test.

Research limitations/implications

The structural kinetics model tends to under-predict the structure build-up rate.

Practical implications

This study details a more realistic prediction of the rheological behaviour of macroscopic suspensions like solder paste, thermal interface materials and other functional materials. The proposed model can be used to characterize different solder pastes and other functional fluids based on the structure build-up and breakdown rates. The model can also be used as the viscosity definitions in numerical simulations instead of simpler models like Carreau–Yasuda and cross-viscosity models.

Originality/value

The rheological description of the solder paste is critical in determining its validity for a given application. The methodology described in the paper provides a better description of thixotropy without relying on the existing rheological measurements or the behaviour predicted by a standard power-law model. The proposed model can also provide transient viscosity predictions when shear rates vary in time.

Details

Soldering & Surface Mount Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 26 September 2023

Alexander Sergeevich Tonkoshkur and Alexander Vladimirovich Ivanchenko

The purpose of this study is to model the dependences of the output voltage, temperature, current and electrical power dissipation of a voltage limiter based on a two-layer…

Abstract

Purpose

The purpose of this study is to model the dependences of the output voltage, temperature, current and electrical power dissipation of a voltage limiter based on a two-layer varistor–posistor structure on time and analysis the influence of operating modes and design parameters of such a limiter on these characteristics.

Design/methodology/approach

The behavior of the limiting voltage, temperature and other parameters of the voltage limiter when an input constant overvoltage is applied is studied by the simulation method. The voltage limiter was a two-layer construction. One layer was a zinc oxide ceramic varistor. The second layer was a posistor polymer composite with a nanocarbon filler of PolySwitch technology.

Findings

The output voltage across the varistor layer decreases and reaches some fixed value related to its breakdown voltage after applying a constant overvoltage to the structure over time. The temperature of the structure increases to some steady state value, while the current decreases significantly. The amplitude of the transient current pulse increases, its duration and energy of the transient process decrease with increasing overvoltage. An increase in the internal resistance of the overvoltage source can cause a decrease in the amplitude and an increase in the duration of transient currents.

Originality/value

The ranges of values for the activation energy of conduction of the varistor layer in weak electric fields, the intensity of heat exchange between the structure under study and the environment are determined to ensure the stable operation of this structure as a voltage limiter. The results obtained make it possible to select the necessary parameters of the indicated structures to ensure the required operating modes of the voltage limiter for various applications.

Article
Publication date: 1 December 1996

M. Wünsche, H. Meyer and R. Schumacher

This paper reports on a method for in‐situ observation of the morphology and stability of electrochemically generatedmetal layers. This information is obtained by comparing…

330

Abstract

This paper reports on a method for in‐situ observation of the morphology and stability of electrochemically generated metal layers. This information is obtained by comparing topographical and kinetic data. The method is based on coulometric, microgravimetric and optical measurement performed in situ on vertically growing electrodes. Measurements are obtained simultaneously from the same surface area.

Details

Circuit World, vol. 22 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 December 2003

Nikolay K. Tolochko, Maxim K. Arshinov, Andrey V. Gusarov, Victor I. Titov, Tahar Laoui and Ludo Froyen

Coupled metallographic examination and heat transfer numerical simulation are applied to reveal the laser sintering mechanisms of Ti powder of 63‐315 μm particle diameter. A…

5995

Abstract

Coupled metallographic examination and heat transfer numerical simulation are applied to reveal the laser sintering mechanisms of Ti powder of 63‐315 μm particle diameter. A Nd:YAG laser beam with a diameter of 2.7‐5.3 mm and a power of 10‐100 W is focused on a bed of loose Ti powder for 10 s in vacuum. The numerical simulation indicates that a nearly hemispherical temperature front propagates from the laser spot. In the region of α‐Ti just behind the front, heat transfer is governed by thermal radiation. The balling effect, formation of melt droplets, is not observed because the temperature increases gradually and the melt appears inside initially sintered powder which resists the surface tension of the melt.

Details

Rapid Prototyping Journal, vol. 9 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 August 2021

Viju Subramoniapillai and Govindharajan Thilagavathi

In recent years, oil spill pollution has become one of the main problems of environmental pollution. Recovering oil by means of sorbent materials is a very promising approach and…

Abstract

Purpose

In recent years, oil spill pollution has become one of the main problems of environmental pollution. Recovering oil by means of sorbent materials is a very promising approach and has acquired more attention due to its high cleanup efficiency. Compared to synthetic fibrous sorbents, the use of natural fibers in oil spill cleanups offers several advantages including environmental friendliness, degradable features and cost-effectiveness. Therefore, studies on developing sorbents using natural fibers for oil spill cleanup applications have become a research hotspot.

Design/methodology/approach

This paper reviews the work conducted by several researchers in developing oil sorbents from fibers such as cattail, nettle, cotton, milkweed, kapok, populous seed fiber and Metaplexis japonica fiber. Some featured critical parameters influencing the oil sorption capacity of fibrous substrates are discussed. Oil sorption capacity and reusability performance of various fibers are also discussed. Recent developments in oil spill cleanups and test methods for oil sorbents are briefly covered.

Findings

The main parameters influencing the oil sorption capacity of sorbents are fiber morphological structure, fiber density (g/cc), wax (%), hollowness (%) and water contact angle. An extensive literature review showed that oil sorption capacity is highest for Metaplexis japonica fiber followed by populous seed fiber, kapok, milkweed, cotton, nettle and cattail fiber. After use, the sorbents can be buried under soil or they can also be burned so that they can be vanished from the surface without causing environmental-related issues.

Originality/value

This review paper aims to summarize research studies conducted related to various natural fibers for oil spill cleanups, fiber structural characteristics influencing oil sorption and recent developments in oil spill cleanups. This work will inspire future researchers with various knowledge backgrounds, particularly, from a sustainability perspective.

Details

Research Journal of Textile and Apparel, vol. 26 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 March 1981

C. BOGDANSKI

An attempt at unification of different groups of physical phenomena by use of cybernetic methodology in order to avoid a dualism in the formalism of Natural Self‐Regulating…

Abstract

An attempt at unification of different groups of physical phenomena by use of cybernetic methodology in order to avoid a dualism in the formalism of Natural Self‐Regulating Systems (NRS) in now being carried out simultaneously by physics and cybernetics. A proposal is made of a unitary elaboration within a framework of cybernetic physics, which should concern not only events belonging to micro‐ and macro‐physics, but also those which are placed intermediately on the size scale, especially systems organized by the biogenesis phenomena and subjected to the laws of a “Meso‐physics”. The systems that result from this evolutively lend themselves to treatment within the framework of an organic branch, which would be a physics of systems endowed with a multihierarchized architecture and ultra‐complex structure.

Details

Kybernetes, vol. 10 no. 3
Type: Research Article
ISSN: 0368-492X

Article
Publication date: 5 January 2022

Ajith Amsasekar, Rahul S. Mor, Anand Kishore, Anupama Singh and Saurabh Sid

The increased demand for high-quality, nutritionally rich processed food has led to non-thermal food processing technologies like high pressure processing (HPP), a novel process…

Abstract

Purpose

The increased demand for high-quality, nutritionally rich processed food has led to non-thermal food processing technologies like high pressure processing (HPP), a novel process for microbial inactivation with minimal loss of nutritional and sensory properties. The purpose of this paper is to highlight the impact of HPP on the microbiological, nutritional and sensory properties of food.

Design/methodology/approach

Recent research on the role of HPP in maintaining food quality and safety and the impact of process conditions with respect to various food properties have been explored in this paper. Also, the hurdle approach and the effectiveness of HPP on food quality have been documented.

Findings

HPP has been verified for industrial application, fulfilling the consumer demand for processed food with minimum nutrition loss at low temperatures. The positive impact of HPP with other treatments is known as the hurdle approach that enhances its impact against microorganism activity and minimizes the effects on nutrition and sensory attributes.

Originality/value

This paper highlights the impact of HPP on various food properties and a good alternative as non-thermal technology for maintaining shelf life, sensory properties and retention of nutrients.

Article
Publication date: 26 April 2011

Amit S. Jariwala, Fei Ding, Aparna Boddapati, Victor Breedveld, Martha A. Grover, Clifford L. Henderson and David W. Rosen

The purpose of this paper is to present a model that can be used to simulate the photopolymerization process in micro‐stereolithography (SL) in order to predict the shape of the…

1372

Abstract

Purpose

The purpose of this paper is to present a model that can be used to simulate the photopolymerization process in micro‐stereolithography (SL) in order to predict the shape of the cured parts. SL is an additive manufacturing process in which liquid photopolymer resin is cross‐linked and converted to solid with a UV laser light source. Traditional models of SL processes do not consider the complex chemical reactions and species transport occurring during photopolymerization and, hence, are incapable of accurately predicting resin curing behavior. The model presented in this paper attempts to bridge this knowledge gap.

Design/methodology/approach

The chemical reactions involved in the photopolymerization of acrylate‐based monomers were modeled as ordinary differential equations (ODE). This model incorporated the effect of oxygen inhibition and diffusion on the polymerization reaction. The model was simulated in COMSOL and verified with experiments conducted on a mask‐based micro‐SL system. Parametric studies were conducted to investigate the possibilities to improve the accuracy of the model for predicting the edge curvature.

Findings

The proposed model predicts well the effect of oxygen inhibition and diffusion on photopolymerization, and the model accurately predicts the cured part height when compared to experiments conducted on a mask‐based SL system. The simulated results also show the characteristic edge curvature as seen in experiments.

Research limitations/implications

A triacrylate monomer was used in the experiments conducted, so results may be limited to acrylate monomers. Shrinkage was not considered when comparing cured part shapes to those predicted using COMSOL.

Originality/value

This paper presents a unique and a pioneering approach towards modeling of the photopolymerization reaction in micro‐SL process. This research furthers the development of patent pending film micro‐SL process which can be used for fabrication of custom micro‐optical components.

Details

Rapid Prototyping Journal, vol. 17 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 May 2018

Srinivasan Raghavan, Mui Ling Sharon Nai, Pan Wang, Wai Jack Sin, Tao Li and Jun Wei

The paper presents a wide range of post processing heat treatment cycles performed to Electron Beam Melted (EBM) Ti6Al4V alloy and establishes correlations of heat treat process…

1063

Abstract

Purpose

The paper presents a wide range of post processing heat treatment cycles performed to Electron Beam Melted (EBM) Ti6Al4V alloy and establishes correlations of heat treat process to microstructure and mechanical property (microhardness). The research also identifies the optimal heat treatment to obtain the best microstructure and mechanical properties (hardness and tensile).

Design/methodology/approach

Rectangular bars fabricated using EBM was used to study the different heat treatment cycles. A variety of heat treatments from sub ß-transus, super ß-transus, near ß-transus and solution aircool plus ageing were designed. After the heat treatment process, the samples were analysed for, α lath width, prior ß grain size, microhardness and nanohardness. Tensile tests were done for the heat treated samples showing most refined α lath structure with uniform globular grains.

Findings

A clear correlation was observed between α lath width and the microhardness values. The solution aircooled plus aged samples exhibited the best refinement in α-ß morphology with uniform equiaxed grains. The tensile properties of the solution aircooled plus aged samples were comparable to that of the EBM printed samples and better than ASTMF1472 specifications.

Originality/value

There is hardly any prior work related to post processing heat treatment of EBM built Ti6Al4V other than HIP treatments. The variety of heat treatment cycles and its influence in microstructure and properties, studied in this research, gives a clear understanding on how to tailor final microstructures and select the optimal heat treatment process.

Details

Rapid Prototyping Journal, vol. 24 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 April 1977

C. BOGDANSKI

The differentiation of RES‐models properties as a function of the scalar position of the considered model seems to conform to the following principles: 1. The probability of the…

Abstract

The differentiation of RES‐models properties as a function of the scalar position of the considered model seems to conform to the following principles: 1. The probability of the presence of a given antinomic state in the property “d” (dynamic) is directly influenced by the position of the model on the size‐scale; 2. The “d” state having been adopted by the RESm‐model, i.e. dmon or dplu, determines the adoption of the state in other mechanical and informational properties in the model under consideration; 3. Each organization of a new model, which is concerned with the RESm‐models series, is accompanied by an inversion of antinomic states in (at least two) cardinal RESm‐properties. Some of the cardinal properties appear as a function of antinomic states inversions during the evolution‐oscillation phenomena of the models.

Details

Kybernetes, vol. 6 no. 4
Type: Research Article
ISSN: 0368-492X

1 – 10 of over 2000