Search results

1 – 10 of 401
Article
Publication date: 14 May 2020

Joakim Sandström

This paper aims to investigate the probability of unacceptable consequences from structural fire damage in a typical Scandinavian single-story steel frame building and discusses…

Abstract

Purpose

This paper aims to investigate the probability of unacceptable consequences from structural fire damage in a typical Scandinavian single-story steel frame building and discusses it in relation to life safety. This paper is a complement to the paper “Life safety in single-story steel frame buildings, Part I – deterministic design” by Sandström (2019) which considers the same design philosophy but with a probabilistic design approach.

Design/methodology/approach

The reliability of a single-story steel frame building is investigated by using crude Monte Carlo simulation by including consideration to the fire conditions.

Findings

The investigated building does not meet the safety levels as stipulated by EN 1990 for structural fire damage. However, by including consideration to the fire conditions in the compartment, it is shown that the life safety objective is not compromised by the structural fire damage, i.e. the structure remains intact as long as any individuals/firefighters can survive within the fire area compartment.

Originality/value

This paper presents practical application of a conceptual paper presenting a general approach to structural fire safety design and the life safety objective.

Details

Journal of Structural Fire Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 23 January 2019

Mayank Shrivastava, Anthony Abu, Rajesh Dhakal and Peter Moss

This paper aims to describe current trends in probabilistic structural fire engineering and provides a comprehensive summary of the state-of-the-art of performance-based…

Abstract

Purpose

This paper aims to describe current trends in probabilistic structural fire engineering and provides a comprehensive summary of the state-of-the-art of performance-based structural fire engineering (PSFE).

Design/methodology/approach

PSFE has been introduced to overcome the limitations of current conventional design approaches used for the design of fire-exposed structures, which investigate assumed worst-case fire scenarios and include multiple thermal and structural analyses. PSFE permits buildings to be designed in relation to a level of life safety or economic loss that may occur in future fire events with the help of a probabilistic approach.

Findings

This paper brings together existing research on various sources of uncertainty in probabilistic structural fire engineering, such as elements affecting post-flashover fire development, material properties, fire models, fire severity, analysis methods and structural reliability.

Originality/value

Prediction of economic loss would depend on the extent of damage, which is further dependent on the structural response. The representative prediction of structural behaviour would depend on the precise quantification of the fire hazard. The incorporation of major uncertainty sources in probabilistic structural fire engineering is explained, and the detailed description of a pioneering analysis method called incremental fire analysis is presented.

Details

Journal of Structural Fire Engineering, vol. 10 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 August 2019

Joakim Sandström

This paper aims to discuss fire safety design of single-story, single compartment buildings and evaluates whether time to structural damage is a relevant criterion when lethal…

Abstract

Purpose

This paper aims to discuss fire safety design of single-story, single compartment buildings and evaluates whether time to structural damage is a relevant criterion when lethal fire conditions develop long before any structural fire damage can occur.

Design/methodology/approach

The proposed approach is demonstrated in a design case study of a steel truss in a typical Swedish single-story steel frame building.

Findings

While not complying with deemed to satisfy fire resistance ratings, it is argued that the proposed design still can fulfill the life safety objective.

Originality/value

This paper presents practical application of a conceptual paper presenting a general approach to structural fire safety design and the life safety objective.

Details

Journal of Structural Fire Engineering, vol. 10 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 18 August 2023

Deanna Craig and M.Z. Naser

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply…

Abstract

Purpose

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply, fire can break out anywhere, at any time and for any number of reasons. Despite the apparent need, the fire design of structures still relies on expensive fire tests, complex finite element simulations and outdated procedures with little room for innovation. This paper aims to discuss the aforementioned issues.

Design/methodology/approach

This primer highlights the latest state of the art in this area with regard to performance-based design in fire structural engineering. In addition, this short review also presents a series of examples of successful implementation of performance-based fire design of structures from around the world.

Findings

A comparison between global efforts clearly shows the advances put forth by European and Oceanian efforts as opposed to the rest of the world. In addition, it can be clearly seen that most performance-based fire designs are related to steel and composite structures.

Originality/value

In one study, this paper presents a concise and global view to performance-based fire design of structures from success stories from around the world.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 March 2013

Shan-Shan Huang, Ian Burgess and Buick Davison

Fire hazards and full-scale structural tests have provided evidence that the beam-column connections of building frames are the weakest structural elements, which are vulnerable…

Abstract

Fire hazards and full-scale structural tests have provided evidence that the beam-column connections of building frames are the weakest structural elements, which are vulnerable to fracture in fire. Connection fractures may lead to extensive damage or even progressive collapse. However, current design methods for connections are solely based on ambient-temperature behaviour, the additional forces and rotations generated in fire are not taken into account. The Structural Fire Engineering Research Group of the University of Sheffield is involved in a European-collaborative project which concerns the behaviour and robustness in fire of practical connections to composite columns. This includes two natural fire tests in a full-scale composite structure in Veselí, the Czech Republic. The Sheffield team was responsible for predicting the structural behaviour in the tests before they were conducted. This assessment was conducted using the specialist structural fire engineering FEA program Vulcan. This paper reports the results of this predictive analysis.

Details

Journal of Structural Fire Engineering, vol. 4 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 May 2020

Ranjit Kumar Chaudhary, Tathagata Roy and Vasant Matsagar

Despite recognizing the significance of risk-based frameworks in fire safety engineering, the usual approach in structural fire design is largely member/component level, wherein…

Abstract

Purpose

Despite recognizing the significance of risk-based frameworks in fire safety engineering, the usual approach in structural fire design is largely member/component level, wherein effect of uncertainties influencing the fire resistance of structures are not explicitly considered. In this context, a probabilistic framework is presented to investigate the vulnerability of a reinforced concrete (RC) members and structure under fire loading scenario.

Design/methodology/approach

The RC structures exposed to fire are modeled in a finite element (FE) platform incorporating material and geometric nonlinearity, in which the transient thermo-mechanical analysis is carried out by suitably incorporating the temperature variation of thermal and mechanical properties of both concrete and steel rebar. The stochasticity in the system is considered in structural resistance, thermal and fire model parameters, and the subsequent fragility curves are developed considering threshold limit state of deflection.

Findings

The fire resistance of RC structure is reported to be significantly lower in comparison to the RC members, thereby illustrating the current prescriptive design approaches based on studies of structural member behavior to be crucial from a safety and reliability point of view.

Practical implications

The framework developed for the vulnerability assessment of RC structures under fire hazard through FE analysis can be effectively used to estimate the structural fire resistance for other similar structure to enhance safety and reliability of structures under such extreme threats.

Originality/value

The paper proposes a novel methodology for vulnerability assessment of three-dimensional RC structures under fire hazard through FE analysis and provides comparison of the structural fragility with fragility developed for structural members. Moreover, the research emphasizes to assume 3D behavior of the structure rather than the approximate 2D behavior.

Details

Journal of Structural Fire Engineering, vol. 11 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 29 March 2018

Osama (Sam) Salem

In fire condition, the limiting temperature of a restrained steel beam depends on a few parameters, e.g. temperature distributions along and across the beam, beam’s load ratio and…

Abstract

Purpose

In fire condition, the limiting temperature of a restrained steel beam depends on a few parameters, e.g. temperature distributions along and across the beam, beam’s load ratio and span length. The purpose of this study is to investigate the structural fire behaviour of axially restrained steel beams under different beam’s load ratios, taking into consideration the effect of the beam’s end connections configuration.

Design/methodology/approach

A three-dimensional finite element (FE) computer model has been developed to simulate the structural fire behaviour of axially restrained steel beams and their end connections. After successfully validating the developed model against the outcomes of the available large-size fire resistance experiments, the FE model has been used in a parametric study to investigate the beam’s load ratio effect on the behaviour of the axially restrained steel beams and their end connections.

Findings

The parametric study showed that increasing the beam loading level significantly increased the beam deflections at elevated temperatures; where, increasing the beam’s load ratio from 0.5 to 0.9 reduced the beam fire resistance by about 100 s. In contrast, decreasing the beam’s load ratio from 0.5 to 0.3 allowed the beam to easily achieve a 30-min fire resistance rating with no fire protection applied.

Originality/value

Experimental parametric studies are difficult to control in a laboratory setting and are also expensive and time consuming. Therefore, the reasonable accuracy of the validated FE model in reproducing the experimental fire behaviour of steel beams and their end connections makes it a very useful tool for both numerical and analytical studies.

Details

Journal of Structural Fire Engineering, vol. 9 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 February 1985

Margaret Law

In this country, as well as in most others, the level of structural fire protection is set by the regulatory authorities, in terms of a specified fire resistance period. The…

Abstract

In this country, as well as in most others, the level of structural fire protection is set by the regulatory authorities, in terms of a specified fire resistance period. The engineer must demonstrate that each element of structure would survive for the required period if it were subjected to the standard fire resistance test of BS476. This is normally demonstrated by using tabular data, such as the deemed‐to‐satisfy tables in the Building Regulations, or by obtaining a report of a test of a replica of the particular element.

Details

Structural Survey, vol. 3 no. 2
Type: Research Article
ISSN: 0263-080X

Article
Publication date: 5 March 2013

Du Yong and Li Guo-qiang

Calculation methods have been developed for application to advanced fire-resistance design. The loading-bearing capacity method involves the performance of a structural analysis…

Abstract

Calculation methods have been developed for application to advanced fire-resistance design. The loading-bearing capacity method involves the performance of a structural analysis for a fire situation using the computer-based finite element method, and checks the loading-bearing capacity of the structure in a fire ultimate limit state. There is a case of a steel roof grid structure fire-resistant assessment to illustrate the basic steps in the loading-bearing capacity method for structural fire safety design. A detailed finite element analysis of a space truss with a credible design fire was carried out to determine the deflections and forces in the space truss, and checked by the fire ultimate limit state. The present data and analysis demonstrate that the loading-bearing capacity method is sufficient for fire safety design.

Details

Journal of Structural Fire Engineering, vol. 4 no. 1
Type: Research Article
ISSN: 2040-2317

Article
Publication date: 31 March 2023

Huseyin Saglik, Airong Chen and Rujin Ma

Beginners and even experienced ones have difficulties in completing the structural fire analysis due to numerical difficulties such as convergence errors and singularity and have…

Abstract

Purpose

Beginners and even experienced ones have difficulties in completing the structural fire analysis due to numerical difficulties such as convergence errors and singularity and have to spend a lot of time making many repetitive changes on the model. The aim of this article is to highlight the advantages of explicit solver which can eliminate the mentioned difficulties in finite element analysis containing highly nonlinear contacts, clearance between modeled parts at the beginning and large deflections because of high temperature. This article provides important information, especially for researchers and engineers who are new to structural fire analysis.

Design/methodology/approach

The finite element method is utilized to achieve mentioned purposes. First, a comparative study is conducted between implicit and explicit solvers by using Abaqus. Then, a validation process is carried out to illustrate the explicit process by using sequentially coupled heat transfer and structural analysis.

Findings

Explicit analysis offers an easier solution than implicit analysis for modeling multi-bolted connections under high temperatures. An optimum mesh density for bolted connections is presented to reflect the realistic structural behavior. Presented explicit process with the offered mesh density is used in the validation of an experimental study on multi-bolted splice connection under ISO 834 standard fire curve. A good agreement is achieved.

Originality/value

What makes the study valuable is that the points to be considered in the structural fire analysis are examined and it is a guide that future researchers can benefit from. This is especially true for modeling and analysis of multi-bolted connections in finite element software under high temperatures. The article can help to shorten and even eliminate the iterative debugging phases, which is a problematic and very time-consuming process for many researchers.

Details

Journal of Structural Fire Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 401