Search results

1 – 10 of over 2000
Article
Publication date: 13 December 2022

Zhenhua Luo, Juntao Guo, Jianqiang Han and Yuhong Wang

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in…

Abstract

Purpose

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in China is in the initial stage of development, which is prone to construction safety issues. This study aims to evaluate the construction safety risks of prefabricated subway stations in China and formulate corresponding countermeasures to ensure construction safety.

Design/methodology/approach

A construction safety risk evaluation index system for the prefabricated subway station was established through literature research and the Delphi method. Furthermore, based on the structure entropy weight method, matter-element theory and evidence theory, a hybrid evaluation model is developed to evaluate the construction safety risks of prefabricated subway stations. The basic probability assignment (BPA) function is obtained using the matter-element theory, the index weight is calculated using the structure entropy weight method to modify the BPA function and the risk evaluation level is determined using the evidence theory. Finally, the reliability and applicability of the evaluation model are verified with a case study of a prefabricated subway station project in China.

Findings

The results indicate that the level of construction safety risks in the prefabricated subway station project is relatively low. Man risk, machine risk and method risk are the key factors affecting the overall risk of the project. The evaluation results of the first-level indexes are discussed, and targeted countermeasures are proposed. Therefore, management personnel can deeply understand the construction safety risks of prefabricated subway stations.

Originality/value

This research fills the research gap in the field of construction safety risk assessment of prefabricated subway stations. The methods for construction safety risk assessment are summarized to establish a reliable hybrid evaluation model, laying the foundation for future research. Moreover, the construction safety risk evaluation index system for prefabricated subway stations is proposed, which can be adopted to guide construction safety management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 November 2023

Yesim Can Saglam

Today’s marketplace has witnessed intense competitive pressures and high levels of uncertainty and disruption. Therefore, supply chains require agility to obtain a sustainable…

Abstract

Purpose

Today’s marketplace has witnessed intense competitive pressures and high levels of uncertainty and disruption. Therefore, supply chains require agility to obtain a sustainable competitive advantage and cope with uncertainties as well as disruptions. Although a wide range of studies exists on supply chain agility (SCA) from the perspective of antecedents or consequences, there is little research on the investigation of enablers of SCA and their relations among them. Furthermore, the literature has investigated proactive and reactive enablers for enhancing SCA, but most studies have not sufficiently framed their analysis of both aspects synchronically. This paper aims to find out the interrelationships among the proactive and reactive enablers for enhancing SCA.

Design/methodology/approach

An extensive literature review has been conducted to identify SCA enablers and a Delphi study has been performed to elucidate SCA enablers in the manufacturing industry in Turkey. Interpretive structural modeling (ISM) has been used to identify the contextual relationship among the SCA enablers, and the model has been validated based on Matriced Impact Croises Multiplication Appliquee a un Classement (MICMAC) analysis.

Findings

On theoretical and practical levels, the proposed ISM model in this study can help organizations analyze and interpret interrelationships among enablers of SCA. For managers, it can provide better insights and understanding of the facilitators of SCA to enhance the effectiveness of the supply chain and cope with uncertainties and turbulence. According to results, enhancing “supply and demand side competency”, “delivery speed” and “strategic sourcing” are the most significant enablers of SCA.

Originality/value

The study extends the existing literature related to the enablers of SCA by modeling the proactive and reactive enablers of SCA based on the Al Humdan et al. (2020) classification. Arranging the enablers of SCA in a hierarchy and classifying the enablers into different levels with the help of the ISM-MICMAC approach is an exclusive effort to achieve successful management of the supply chain.

Details

Journal of Modelling in Management, vol. 19 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 1 August 2023

Jinal Shah and Monica Khanna

This study aims to understand the learner behaviour of millennials for Massive Open Online Courses (MOOCs) in the post-adoption stage by extending the theory of Unified Theory of…

Abstract

Purpose

This study aims to understand the learner behaviour of millennials for Massive Open Online Courses (MOOCs) in the post-adoption stage by extending the theory of Unified Theory of Acceptance and User Technology 2 (UTAUT2) with expectancy confirmation model (ECM) along with personal innovativeness as the exogenous, satisfaction as a mediating and continued intention as an endogenous construct.

Design/methodology/approach

This study applied a cross-sectional research design by using a survey method to collect primary data with a structured questionnaire. Convenience sampling was used to collect data from millennial MOOC users, and partial least square structural equation modelling method was applied for data analysis.

Findings

The results indicate that performance expectancy, effort expectancy, social influence, facilitating conditions, hedonic motivation influence satisfaction. Similarly, performance expectancy, hedonic motivation, personal innovativeness and satisfaction influence the continued intention for MOOCs.

Research limitations/implications

In terms of limitations, the study applied a cross-sectional research design that could lead to data collection bias. Similarly, the study used convenience sampling as the authors did not have access to the participant list of users from MOOC platforms.

Practical implications

The research highlights various insights to all the stakeholders on improving MOOC satisfaction and enhance the continued intention for millennial learners.

Originality/value

The findings of this research bridge this gap by examining the post-adoption usage behaviour of MOOCs by extending the baseline model of UTAUT2 with personal innovativeness and integrating it with ECM.

Details

Information Discovery and Delivery, vol. 52 no. 2
Type: Research Article
ISSN: 2398-6247

Keywords

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 12 April 2024

Ahmad Honarjoo and Ehsan Darvishan

This study aims to obtain methods to identify and find the place of damage, which is one of the topics that has always been discussed in structural engineering. The cost of…

Abstract

Purpose

This study aims to obtain methods to identify and find the place of damage, which is one of the topics that has always been discussed in structural engineering. The cost of repairing and rehabilitating massive bridges and buildings is very high, highlighting the need to monitor the structures continuously. One way to track the structure's health is to check the cracks in the concrete. Meanwhile, the current methods of concrete crack detection have complex and heavy calculations.

Design/methodology/approach

This paper presents a new lightweight architecture based on deep learning for crack classification in concrete structures. The proposed architecture was identified and classified in less time and with higher accuracy than other traditional and valid architectures in crack detection. This paper used a standard dataset to detect two-class and multi-class cracks.

Findings

Results show that two images were recognized with 99.53% accuracy based on the proposed method, and multi-class images were classified with 91% accuracy. The low execution time of the proposed architecture compared to other valid architectures in deep learning on the same hardware platform. The use of Adam's optimizer in this research had better performance than other optimizers.

Originality/value

This paper presents a framework based on a lightweight convolutional neural network for nondestructive monitoring of structural health to optimize the calculation costs and reduce execution time in processing.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 8 February 2024

Joseph F. Hair, Pratyush N. Sharma, Marko Sarstedt, Christian M. Ringle and Benjamin D. Liengaard

The purpose of this paper is to assess the appropriateness of equal weights estimation (sumscores) and the application of the composite equivalence index (CEI) vis-à-vis

2580

Abstract

Purpose

The purpose of this paper is to assess the appropriateness of equal weights estimation (sumscores) and the application of the composite equivalence index (CEI) vis-à-vis differentiated indicator weights produced by partial least squares structural equation modeling (PLS-SEM).

Design/methodology/approach

The authors rely on prior literature as well as empirical illustrations and a simulation study to assess the efficacy of equal weights estimation and the CEI.

Findings

The results show that the CEI lacks discriminatory power, and its use can lead to major differences in structural model estimates, conceals measurement model issues and almost always leads to inferior out-of-sample predictive accuracy compared to differentiated weights produced by PLS-SEM.

Research limitations/implications

In light of its manifold conceptual and empirical limitations, the authors advise against the use of the CEI. Its adoption and the routine use of equal weights estimation could adversely affect the validity of measurement and structural model results and understate structural model predictive accuracy. Although this study shows that the CEI is an unsuitable metric to decide between equal weights and differentiated weights, it does not propose another means for such a comparison.

Practical implications

The results suggest that researchers and practitioners should prefer differentiated indicator weights such as those produced by PLS-SEM over equal weights.

Originality/value

To the best of the authors’ knowledge, this study is the first to provide a comprehensive assessment of the CEI’s usefulness. The results provide guidance for researchers considering using equal indicator weights instead of PLS-SEM-based weighted indicators.

Details

European Journal of Marketing, vol. 58 no. 13
Type: Research Article
ISSN: 0309-0566

Keywords

Article
Publication date: 10 November 2022

Nursyamsi Nursyamsi, Johannes Tarigan, Muhammad Aswin, Badorul Hisham Abu Bakar and Harianto Hardjasaputra

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading…

Abstract

Purpose

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading, inadequate design, poor work execution, fire, storm, earthquakes etc. Therefore, repairing and strengthening is one way to improve damaged structures, so that they can be reutilized. In this research, the use of an ultra high-performance fibre-reinforced concrete (UHPFRC) layer is proposed as a strengthening material to rehabilitate damaged-RC beams. Different strengthening schemes pertaining to the structural performance of the retrofitted RC beams due to the flexural load were investigated.

Design/methodology/approach

A total of 13 normal RC beams were prepared. All the beams were subjected to a four-point flexural test. One beam was selected as the control beam and tested to failure, whereas the remaining beams were tested under a load of up to 50% of the ultimate load capacity of the control beam. The damaged beams were then strengthened using a UHPFRC layer with two different schemes; strip-shape and U-shape schemes, before all the beams were tested to failure.

Findings

Based on the test results, the control beam and all strengthened beams failed in the flexural mode. Compared to the control beam, the damaged-RC beams strengthened using the strip-shape scheme provided an increase in the ultimate load capacity ranging from 14.50% to 43.48% (or an increase of 1.1450 to 1.4348 times), whereas for the U-shape scheme beams ranged from 48.70% to 149.37% (or an increase of 1.4870–2.4937 times). The U-shape scheme was more effective in rehabilitating the damaged-RC beams. The UHPFRC mixtures are workable, as well easy to place and cast into the formworks. Furthermore, the damaged-RC beams strengthened using strip-shape scheme and U-shape scheme generated ductility factors of greater than 4 and 3, respectively. According to Eurocode8, these values are suitable for seismically active regions. Therefore, the strengthened damaged-RC beams under this study can quite feasibly be used in such regions.

Research limitations/implications

Observations of crack patterns were not accompanied by measurements of crack widths due to the unavailability of a microcrack meter in the laboratory. The cost of the strengthening system application were not evaluated in this study, so the users should consider wisely related to the application of this method on the constructions.

Practical implications

Rehabilitation of the damaged-RC beams exhibited an adequate structural performance, where all strengthened RC beams fail in the flexural mode, as well as having increment in the failure load capacity and ductility. So, the used strengthening system in this study can be applied for the building construction in the seismic regions.

Social implications

Aside from equipment, application of this strengthening system need also the labours.

Originality/value

The use of sand blasting on the surfaces of the damaged-RC beams, as well as the application of UHPFRC layers of different thicknesses and shapes to strengthen the damaged-RC beams, provides a novel innovation in the strengthening of damaged-RC beams, which can be applicable to either bridge or building constructions.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

31

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 November 2023

Ahmad Khodamipour, Hassan Yazdifar, Mahdi Askari Shahamabad and Parvin Khajavi

Today, with the increasing involvement of the environment and human beings business units, paying attention to fulfilling social responsibility obligations while making a profit…

Abstract

Purpose

Today, with the increasing involvement of the environment and human beings business units, paying attention to fulfilling social responsibility obligations while making a profit has become increasingly necessary for achieving sustainable development goals. Attention to profit by organizations should not be without regard to their social and environmental performance. Social responsibility accounting (SRA) is an approach that can pay more attention to the social and environmental performance of companies, but it has many barriers. Therefore, the purpose of this study is to identify barriers to SRA implementation and provide strategies to overcome these barriers.

Design/methodology/approach

In this study, the authors identify barriers to social responsibility accounting implementation and provide strategies to overcome these barriers. By literature review, 12 barriers and seven strategies were identified and approved using the opinions of six academic experts. Interpretive structural modeling (ISM) has been used to identify significant barriers and find textual relationships between them. The fuzzy technique for order performance by similarity to ideal solution (TOPSIS) method has been used to identify and rank strategies for overcoming these barriers. This study was undertaken in Iran (an emerging market). The data has been gathered from 18 experts selected using purposive sampling and included CEOs of the organization, senior accountants and active researchers well familiar with the field of social responsibility accounting.

Findings

Based on the results of this study, the cultural differences barrier was introduced as the primary and underlying barrier of the social responsibility accounting barriers model. At the next level, barriers such as “lack of public awareness of the importance of social responsibility accounting, lack of social responsibility accounting implementation regulations and organization size” are significant barriers to social responsibility accounting implementation. Removing these barriers will help remove other barriers in this direction. In addition, the results of the TOPSIS method showed that “mandatory regulations, the introduction of guidelines and social responsibility accounting standards,” “regulatory developments and government incentive schemes to implement social responsibility accounting,” as well as “increasing public awareness of the benefits of social responsibility accounting” are some of the essential social responsibility accounting implementation strategies.

Practical implications

The findings of the study have implications for both professional accounting bodies for developing the necessary standards and for policymakers for adopting policies that facilitate the implementation of social responsibility accounting to achieve sustainability.

Social implications

This paper creates a new perspective on the practical implementation of social responsibility accounting, closely related to improving environmental performance and increasing social welfare through improving sustainability.

Originality/value

Experts believe that the strategies mentioned above will be very effective and helpful in removing the barriers of the lower level of the model. To the best of the authors’ knowledge, for the first time, this study develops a model of social responsibility accounting barriers and ranks the most critical implementation strategies.

Article
Publication date: 9 April 2024

Shuai Zhan and Zhilan Wan

The credit of agricultural product quality and safety reflects the ability of the main actors involved in the supply chain to provide reliable agricultural products to consumers…

Abstract

Purpose

The credit of agricultural product quality and safety reflects the ability of the main actors involved in the supply chain to provide reliable agricultural products to consumers. To fundamentally solve the problem of agricultural product quality and safety, it is worth studying how to make the credit awareness and integrity self-discipline of the supply chain agriculture-related subjects strengthened and the role and value of credit supervision given full play. Starting from the application of blockchain in the agricultural product supply chain, this paper aims to investigate the main factors affecting the credit regulation of agricultural product quality.

Design/methodology/approach

Using the DEMATEL-ISM (decision-making trial and evaluation laboratory–interpretative structural modeling) method, we analyze the credit influencing factors of agricultural quality and safety empowered by blockchain technology, find the causal relationship between the crucial influencing factors and deeply explore the hierarchical transmission relationship between the influencing factors. Then, the path analysis in structural equation modeling is utilized to verify and measure the significance and effect value of the transmission relationship among the crucial influencing factors of credit regulation.

Findings

The results show that the quality and safety credit regulation of agricultural products is influenced by a combination of direct and deep influencing factors. Long-term stable cooperative relationship, Quality and safety credit evaluation, Supply chain risk control ability, Quality and safety testing, Constraints of the smart contract are the main influence path of blockchain embedded in agricultural product supply chain quality and safety credit supervision.

Originality/value

Credit supervision is an important means to improve the ability and level of social governance and standardize the market order. From the perspective of blockchain embedded in the agricultural supply chain, the regulatory body is transformed from the product body to the supply chain body. Take the credit supervision of supply chain subjects as the basis of agricultural product quality supervision. With the help of blockchain technology to improve the effectiveness of agricultural product quality and safety credit supervision, credit supervision is used to constrain and incentivize the behavior of agricultural subjects.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 10 of over 2000