Search results

1 – 10 of over 1000
Article
Publication date: 14 December 2023

Xiwen Zhang, Zhen Zhang, Wenhao Sun, Jilei Hu, Liangliang Zhang and Weidong Zhu

Under the repeated action of the construction load, opening deformation and disturbed deformation occurred at the precast box culvert joints of the shield tunnel. The objective of…

Abstract

Purpose

Under the repeated action of the construction load, opening deformation and disturbed deformation occurred at the precast box culvert joints of the shield tunnel. The objective of this paper is to investigate the effect of construction vehicle loading on the mechanical deformation characteristics of the internal structure of a large-diameter shield tunnel during the entire construction period.

Design/methodology/approach

The structural response of the prefabricated internal structure under heavy construction vehicle loads at four different construction stages (prefabricated box culvert installation, curved lining cast-in-place, lane slab installation and pavement structure casting) was analyzed through field tests and ABAQUS (finite element analysis software) numerical simulation.

Findings

Heavy construction vehicles can cause significant mechanical impacts on the internal structure, as the construction phase progresses, the integrity of the internal structure with the tunnel section increases. The vertical and horizontal deformation of the internal structure is significantly reduced, and the overall stress level of the internal structure is reduced. The bolts connecting the precast box culvert have the maximum stress at the initial stage of construction, as the construction proceeds the stress distribution among the bolts gradually becomes uniform.

Originality/value

This study can provide a reference for the design model, theoretical analysis and construction technology of the internal structure during the construction of large-diameter tunnel projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Abstract

Details

Thriving in Academic Leadership
Type: Book
ISBN: 978-1-83753-303-9

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

19

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 July 2023

Ulrich Gabbert, Stefan Ringwelski, Mathias Würkner and Mario Kittsteiner

Pores and shrink holes are unavoidable defects in the die-casting mass production process which may significantly influence the strength, fatigue and fracture behaviour as well as…

Abstract

Purpose

Pores and shrink holes are unavoidable defects in the die-casting mass production process which may significantly influence the strength, fatigue and fracture behaviour as well as the life span of structures, especially if they are subjected to high static and dynamic loads. Such defects should be considered during the design process or after production, where the defects could be detected with the help of computed tomography (CT) measurements. However, this is usually not done in today's mass production environments. This paper deals with the stress analysis of die-cast structural parts with pores found from CT measurements or that are artificially placed within a structure.

Design/methodology/approach

In this paper the authors illustrate two general methodologies to take into account the porosity of die-cast components in the stress analysis. The detailed geometry of a die-cast part including all discontinuities such as pores and shrink holes can be included via STL data provided by CT measurements. The first approach is a combination of the finite element method (FEM) and the finite cell method (FCM), which extends the FEM if the real geometry cuts finite elements. The FCM is only applied in regions with pores. This procedure has the advantage that all simulations with different pore distributions, real or artificial, can be calculated without changing the base finite element mesh. The second approach includes the pore information as STL data into the original CAD model and creates a new adapted finite element mesh for the simulation. Both methods are compared and evaluated for an industrial problem.

Findings

The STL data of defects which the authors received from CT measurements could not be directly applied without repairing them. Therefore, for FEM applications an appropriate repair procedure is proposed. The first approach, which combines the FEM with the FCM, the authors have realized within the commercial software tool Abaqus. This combination performs well, which is demonstrated for test examples, and is also applied for a complex industrial project. The developed in-house code still has some limitations which restrict broader application in industry. The second pure FEM-based approach works well without limitations but requires increasing computational effort if many different pore distributions are to be investigated.

Originality/value

A new simulation approach which combines the FEM with the FCM has been developed and implemented into the commercial Abaqus FEM software. This approach the authors have applied to simulate a real engineering die-cast structure with pores. This approach could become a preferred way to consider pores in practical applications, where the porosity can be derived either from CT measurements or are artificially adopted for design purposes. The authors have also shown how pores can be considered in the standard FEM analysis as well.

Article
Publication date: 28 April 2023

Mohamed Beneldjouzi, Mohamed Hadid and Nasser Laouami

Several studies were made on paired site and soil–structure interaction (SSI) effects, but most of them were site specific. This paper aims to investigate the impact of SSI…

Abstract

Purpose

Several studies were made on paired site and soil–structure interaction (SSI) effects, but most of them were site specific. This paper aims to investigate the impact of SSI effects in conjunction with local soil condition effects on the seismic response of typical multistory low- to mid-rise–reinforced concrete (RC) buildings resting on Algerian regulatory design sites through a global explicit transfer function (TF).

Design/methodology/approach

A preliminary quantification of SSI effects associated with site effects is carried out through a frequency-domain solution based on the concept of rock-to-soil surface displacement TF performed for each design site category. It results from the combination of the TFs of structure, foundation and soil and reflects how seismic waves are amplified due to changes in the geological contrast between the rock and overlying soil deposits. As well, response modification factors, denoting displacement ratios of the building responses within the flexible and site-structure conditions with respect to the fixed-base one, are carried out.

Findings

In the context of Algerian seismic regulation, the study provides a clear vision of how and when site or SSI effects are expected to be influential, as opposed to the fixed-base hypothesis still retained by the current regulation. This helps engineers to be aware of the extent of the expected seismic damage.

Research limitations/implications

The research applies to low- to mid-rise RC buildings within the Algerian seismic regulation, but it may also be expanded to other examples that fall under other seismic regulations.

Practical implications

The response modification ratio is a quantitative approach to assessing response fluctuations. It draws attention to how the roof level drift varies depending on the condition. These results can be used as numerical parameters in structural seismic design when the structure is comparable because they provide useful information about how the two phenomena interact with the structure.

Originality/value

The study goes beyond particular situations dealing with site specific and offers effective indicators and quantitative evaluation of combined site and SSI effects according to the current national seismic provisions, where no indication about site or SSI effects exists.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 January 2024

Sofiane Talbi, Mokadem Salem, Belaïd Mechab, Tewfik Ghomari, Ahmed Allem, Belabbes Bachir Bouiadjra and Benelmaarouf Mehdi

This study provides an analysis of patch repair for cracked aircraft structures. Delamination is a type of damage that affects the patch's behavior. The purpose of this study is…

Abstract

Purpose

This study provides an analysis of patch repair for cracked aircraft structures. Delamination is a type of damage that affects the patch's behavior. The purpose of this study is to assess the influence of delamination on repair performance.

Design/methodology/approach

An analytical and numerical study using the finite element method was conducted for a cracked plate repaired with a patch containing a pre-existing delamination defect. The method for defining the contact pair surfaces and modeling the delamination interaction within the patch interface is specified using the virtual crack closure technique (VCCT) approach.

Findings

The efficiency of the repair is measured in terms of the J-integral. The effects of delamination initiation, mechanical loading, crack length and patch stacking sequences are presented. It is noted that in mode I, delamination propagation is only significant at node A. The numerical results are in good agreement with those of the analytical solution found in the literature. It is observed that the patch's behavior is strongly dependent on loading, crack size and stacking sequences in terms of reducing the structure's lifespan, especially in the presence of delamination.

Originality/value

The numerical modeling presented by the VCCT approach is highly valuable for studying delamination evolution. The influence of loading, crack size and stacking sequences on repair performance is discussed in this work.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 February 2022

Hoang-Quan Chu and Cong-Truong Dinh

This study’s investigation aims to clarify the effect of an additional geometry, i.e. a fillet radius, to the blades of a single-stage transonic axial compressor, NASA Stage 37…

Abstract

Purpose

This study’s investigation aims to clarify the effect of an additional geometry, i.e. a fillet radius, to the blades of a single-stage transonic axial compressor, NASA Stage 37, on its aerodynamic and structural performances.

Design/methodology/approach

Applying the commercial simulation software and the one-way fluid–structure interaction (FSI) approach, this study first evaluated the simulation results with the experimental data for the aerodynamic performances. Second, this paper compared the structural performances between the models with and without fillets.

Findings

This research analyses the aerodynamic results (i.e. total pressure ratio, adiabatic efficiency, stall margin) and the structural outcomes (i.e. equivalent von Mises stress, total deformation) of the single-stage transonic axial compressor NASA Stage 37.

Originality/value

This paper mentions the influence of blade fillets (i.e. both rotor hub fillet and stator shroud fillet) on the compressor performances (i.e. the aerodynamic and structural performances).

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 26 September 2023

Ruqing Bai, Hakim Naceur, Jinglei Zhao, Jin Yi, Jie Ma, Huayan Pu and Jun Luo

In this paper, the standard Peridynamic Timoshenko beam model accounting for the shear deformation is chosen to describe the thick beam kinematics. Unfortunately, when applied to…

Abstract

Purpose

In this paper, the standard Peridynamic Timoshenko beam model accounting for the shear deformation is chosen to describe the thick beam kinematics. Unfortunately, when applied to very thin beam structures, the standard Peridynamics (PD) encounters the shear locking phenomenon, leading to incorrect solutions.

Design/methodology/approach

PD differs from classical continuum mechanics and other nonlocal theories that do not involve spatial derivatives of the displacement field. PD is based on the integral equation instead of differential equations to handle discontinuities and other singularities.

Findings

The shear locking can be successfully alleviated using the developed selective integration method. In particular, this technique has been implemented in the standard PD, which allows an accurate result for a wide range of slenderness from very thin to thick (10 < L/t < 103) structures. It can also accelerate the computational time for particular dynamic problems using fewer neighboring integration particles. Several numerical examples are solved to demonstrate the effectiveness of the proposed method for modeling beam structures.

Originality/value

The paper highlights the severe shear locking phenomenon in the Peridynamic Timoshenko beam available in the literature, especially for very thin structures. A new alternative for the alleviation of shear locking in the Peridynamic Timoshenko beam, using selective integration. Hence the developed Peridynamic Timoshenko beam model is effective for thin and thick structures. A new peridynamic formulation for the low-velocity impact beam models is presented and validated.

Highlights

  1. The paper highlights the severe shear locking phenomenon in the Peridynamic Timoshenko beam proposed in the literature, especially for very thin structures.

  2. The developed Peridynamic Timoshenko beam model based on selective integration is effective for thin and thick structures.

  3. A new peridynamic formulation for the low-velocity impact beam models is presented and validated.

The paper highlights the severe shear locking phenomenon in the Peridynamic Timoshenko beam proposed in the literature, especially for very thin structures.

The developed Peridynamic Timoshenko beam model based on selective integration is effective for thin and thick structures.

A new peridynamic formulation for the low-velocity impact beam models is presented and validated.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 December 2023

Niveen Badra, Hosam Hegazy, Mohamed Mousa, Jiansong Zhang, Sharifah Akmam Syed Zakaria, Said Aboul Haggag and Ibrahim Abdul-Rashied

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel…

Abstract

Purpose

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel pedestrian bridges (SPBs). The cost estimation process uses two main parameters, but the main goal is to create a cost estimation model.

Design/methodology/approach

This study explores a flexible model design that uses computing capabilities for decision-making. Using cost optimization techniques, the model can select an optimal pedestrian bridge system based on multiple criteria that may change independently. This research focuses on four types of SPB systems prevalent in Egypt and worldwide. The study also suggests developing a computerized cost and weight optimization model that enables decision-makers to select the optimal system for SPBs in keeping up with the criteria established for that system.

Findings

In this paper, the authors developed an optimization model for cost estimates of SPBs. The model considers two main parameters: weight and cost. The main contribution of this study based on a parametric study is to propose an approach that enables structural engineers and designers to select the optimum system for SPBs.

Practical implications

The implications of this research from a practical perspective are that the study outlines a feasible approach to develop a computerized model that utilizes the capabilities of computing for quick cost optimization that enables decision-makers to select the optimal system for four common SPBs based on multiple criteria that may change independently and in concert with cost optimization during the preliminary design stage.

Social implications

The model can choose an optimal system for SPBs based on multiple criteria that may change independently and in concert with cost optimization. The resulting optimization model can forecast the optimum cost of the SPBs for different structural spans and road spans based on local unit costs of materials cost of steel structures, fabrication, erection and painting works.

Originality/value

The authors developed a computerized model that uses spreadsheet software's capabilities for cost optimization, enabling decision-makers to select the optimal system for SPBs meeting the criteria established for such a system. Based on structural characteristics and material unit costs, this study shows that using the optimization model for estimating the total direct cost of SPB systems, the project cost can be accurately predicted based on the conceptual design status, and positive prediction outcomes are achieved.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 December 2023

Brahim Chebbab, Haroun Ragueb, Walid Ifrah and Dounya Behnous

This study addresses the reliability of a composite fiber (carbon fibers/epoxy matrix) at microscopic level, with a specific focus on its behavior under compressive stresses. The…

Abstract

Purpose

This study addresses the reliability of a composite fiber (carbon fibers/epoxy matrix) at microscopic level, with a specific focus on its behavior under compressive stresses. The primary goal is to investigate the factors that influence the reliability of the composite, specifically considering the effects of initial fiber deformation and fiber volume fraction.

Design/methodology/approach

The analysis involves a multi-step approach. Initially, micromechanics theory is employed to derive limit state equations that define the stress levels at which the fiber remains within an acceptable range of deformation. To assess the composite's structural reliability, a dedicated code is developed using the Monte Carlo method, incorporating random variables.

Findings

Results highlight the significance of initial fiber deformation and volume fraction on the composite's reliability. They indicate that the level of initial deformation of the fibers plays a crucial role in determining the composite reliability. A fiber with 0.5% initial deformation exhibits the ability to endure up to 28% additional stress compared to a fiber with 1% initial deformation. Conversely, a higher fiber volume fraction contributes positively to the composite's reliability. A composite with 60% fiber content and 0.5% initial deformation can support up to 40% additional stress compared to a composite containing 40% fibers with the same deformation.

Originality/value

The study's originality lies in its comprehensive exploration of the factors affecting the reliability of carbon fiber-epoxy matrix composites under compressive stresses. The integration of micromechanics theory and the Monte Carlo method for structural reliability analysis contributes to a thorough understanding of the composite's behavior. The findings shed light on the critical roles played by initial fiber deformation and fiber volume fraction in determining the overall reliability of the composite. Additionally, the study underscores the importance of careful fiber placement during the manufacturing process and emphasizes the role of volume fraction in ensuring the final product's reliability.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 1000