Search results

1 – 10 of over 9000
Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 15 November 2013

Yury Matvienko

The purpose of this paper is to develop basic principles of deterministic structural integrity assessment of a component with a crack- or notch-like defect by including safety…

Abstract

Purpose

The purpose of this paper is to develop basic principles of deterministic structural integrity assessment of a component with a crack- or notch-like defect by including safety factors against fracture and plastic collapse in criteria equations of linear and nonlinear fracture mechanics.

Design/methodology/approach

The safety factors against fracture are calculated by demanding that the applied critical stress should not be less than the yield stress of the material for a component with a crack or a notch of the acceptable size. Structural integrity assessment of the engineering components damaged by crack- or notch-like defects is discussed from view point of the failure assessment diagram (FAD). The methodology of the FAD has been employed for the structural integrity analysis and assessment of acceptable sizes of throw-thickness notch in a plate under tension and surface longitudinal notch-like defects in a pressure vessel.

Findings

Basic equations have been presented to calculate the safety factor against fracture for critical values of the stress intensity factor, crack tip opening displacement (CTOD), the J-integral and the FAD as well as to estimate an acceptable (safe) region for an engineering component with a crack- or notch-like defect of the acceptable size. It was shown that safety factors against fracture depend on both the safety factor against plastic collapse and employed fracture mechanics criterion. The effect of crack/notch tip constraint is incorporated into criteria equations for the calculation of safety factors against fracture.

Originality/value

The deterministic method of fracture mechanics is recommended for structural integrity assessment of a component with a crack- or notch-like defect by including safety factors against fracture and plastic collapse in criteria equations of linear and nonlinear fracture mechanics.

Details

International Journal of Structural Integrity, vol. 4 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 November 2014

Utkarsh Ajay Shah

– The purpose of this paper is to compare different existing assessment procedures for their limitations and applicable areas.

Abstract

Purpose

The purpose of this paper is to compare different existing assessment procedures for their limitations and applicable areas.

Design/methodology/approach

Procedures have been studied in-depth along with their criterion for applications.

Findings

The study shows applicability of different procedures along with their limitations and future scope.

Originality/value

The paper provides starting point for performing damage assessment based on relevant procedures.

Details

International Journal of Structural Integrity, vol. 5 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 24 May 2013

Virginia Madrazo, Sergio Cicero and Isidro Carrascal

The purpose of this paper is to present and validate a methodology for the structural integrity assessment of components containing a variety of stress risers and subjected to…

Abstract

Purpose

The purpose of this paper is to present and validate a methodology for the structural integrity assessment of components containing a variety of stress risers and subjected to static conditions.

Design/methodology/approach

The methodology is based on the use of the apparent fracture toughness prediction provided by the theory of critical distances (in this case, the line method), together with a well‐known, widely‐used engineering tool in structural integrity assessments: failure assessment diagrams. In order to validate the proposed methodology, an experimental programme has been conducted, testing 38 specimens made of aluminium alloy Al7075‐T651, each of them containing a certain stress riser. The comparison between the experimental results and the corresponding predictions provided by the proposed assessment methodology has also allowed the situations for which the theory of critical distances provides accurate predictions to be defined.

Findings

The results show that the methodology provides accurate results as long as the Neuber number, defined as the notch radius divided by the critical distance (L), is sufficiently low. In order to extend the validity to situations where the Neuber number is higher, it is necessary to calibrate L by using notched specimens with similar radii to those found in the defects being analysed.

Originality/value

The present study is part of Virginia Madrazo's doctoral thesis, an original research work.

Details

International Journal of Structural Integrity, vol. 4 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 April 1987

B. TOMKINS

THE Structural Integrity Centre (SIC) had its origins in the 1970s when major integrity issues arose on the UKAEA's plant in service, eg weld cracking in the prototype fast…

Abstract

THE Structural Integrity Centre (SIC) had its origins in the 1970s when major integrity issues arose on the UKAEA's plant in service, eg weld cracking in the prototype fast reactors (PFR) steam generator units, and safety concerns led to a rigorous assessment of the integrity of the civil pressurised water reactors (PWR) pressure vessel (the Marshall committee report). In both cases engineers and scientists from various disciplines throughout the authority were involved in the consideration and resolution of these issues, and it was demonstrated that assurance of plant integrity could no longer be provided by the plant designer or operator alone.

Details

Industrial Lubrication and Tribology, vol. 39 no. 4
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 11 March 2014

Aaron Warren, Rikard Heslehurst and Eric Wilson

The purpose of this paper is to discuss changes to MIL-STD-1530C “Aircraft Structural Integrity Program” to account for the increased usage of composites in aircraft structures…

233

Abstract

Purpose

The purpose of this paper is to discuss changes to MIL-STD-1530C “Aircraft Structural Integrity Program” to account for the increased usage of composites in aircraft structures.

Design/methodology/approach

The evolution of the Aircraft Structural Integrity Program is presented and the five tasks that comprise the program are assessed for compatibility with composite aircraft structures.

Findings

This paper identifies a number of recommended changes to MIL-STD-1530C to ensure that the unique behaviour of composites is considered within the Aircraft Structural Integrity Program.

Originality/value

This paper recommends changes to MIL-STD-1530C to account for composite aircraft structures, thus providing assurance compatibility of the Aircraft Structural Integrity Program with composite materials.

Details

International Journal of Structural Integrity, vol. 5 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 February 2015

C. K. Mukhopadhyay, T.K. Haneef, T. Jayakumar, G.K. Sharma and B.P.C. Rao

The purpose of this paper is to present the results of acoustic emission (AE) and ultrasonic inspection of two H2S storage tanks carried out in a heavy water plant, in order to…

214

Abstract

Purpose

The purpose of this paper is to present the results of acoustic emission (AE) and ultrasonic inspection of two H2S storage tanks carried out in a heavy water plant, in order to characterize point type defects observed during earlier ultrasonic inspection and to ensure that these defects are not growing during hydrotesting of the tanks.

Design/methodology/approach

Using multiple AE sensors and AE source location methodology, the entire tank could be covered to detect and locate any dynamic sources of AE associated with local plastic deformation and/or growing discontinuities from any part of the tank during the hydrotest. For confirmation of the results obtained by AE, ultrasonic inspection on the tanks and on virgin plates from which the tanks were manufactured, were carried out.

Findings

The AE signals generated during first pressurisation are attributed to the micro yielding of the material of the tanks. A few scattered AE events were observed at a few locations during the hydrotesting of the tanks and these are due to structural and rubbing noise. During hold periods and repressurising cycle of the hydrotesting, no detectable AE events were observed and this confirmed the absence of any growing discontinuity in the tanks during the hydrotesting. Ultrasonic inspection on the tanks and on virgin plates confirmed that the point type defects detected are manufacturing defects and not formed during service life.

Practical implications

The combined results from AE and ultrasonic techniques confirmed the structural integrity of the tanks and ensured their healthiness for continued operation.

Originality/value

The paper brings out the use of AE and ultrasonic techniques for monitoring hydrotesting of storage tanks of a heavy water plant. The storage tanks where point type defect indications were reported during previous ultrasonic inspection and whether these defects are growing during hydrotesting of the tanks or not, were required to be known before the tanks are put in to further service. AE signals collected during pressurising and repressurising cycles of the hydrotest and subsequent inspection by ultrasonic confirmed the vessels to be free from growing defects during the hydrotest and provided baseline data for future inspection.

Details

International Journal of Structural Integrity, vol. 6 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 May 2014

Anghel Cernescu, Liviu Marsavina and Ion Dumitru

The purpose of this paper is to present a methodology for assessing the structural integrity of a tie member from a bucket-wheel excavator, ESRC 470 model, which was in operation…

Abstract

Purpose

The purpose of this paper is to present a methodology for assessing the structural integrity of a tie member from a bucket-wheel excavator, ESRC 470 model, which was in operation for about 20 years. The tie member is made of S355J2N structural steel. Following the period of operation, the occurrence of microcracks which can propagate by fatigue is almost inevitable. It is therefore necessary to analyze the structural integrity and the remaining life of the component analyzed.

Design/methodology/approach

In principle, the assessment methodology is based on three steps: first, the evaluation of mechanical properties of the material component; second, a BEM analysis using FRANC 3D software package to estimate the evolution of the stress intensity factor based on crack length and applied stress; third, risk factor estimation and remaining fatigue life predictions based on failure assessment diagram and fatigue damage tolerance concept.

Findings

Following the evaluation procedure were made predictions of failure risk factor and remaining fatigue life function of crack length and variable stress range, for a high level of confidence.

Originality/value

As results of this analysis was implemented a program for verification and inspection of the tie member for the loading state and development of small cracks during operation.

Details

International Journal of Structural Integrity, vol. 5 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 April 2020

Roberto Outa, Fabio Roberto Chavarette, Vishnu Narayan Mishra, Aparecido C. Gonçalves, Luiz G.P. Roefero and Thiago C. Moro

In recent years, the mechanical industries began to apply many investments in research and technological development to obtain efficient methods to analyze the integrity of…

Abstract

Purpose

In recent years, the mechanical industries began to apply many investments in research and technological development to obtain efficient methods to analyze the integrity of structures and prevent disasters and/or accidents, ensuring people’s lives and preventing economic losses. Any structure, whether mechanical or aeronautical, before being put into use undergoes a structural integrity assessment and testing. In this case, non-destructive evaluations are performed, aiming to estimate the degree of safety and reliability of the structure. For this, there are techniques traditionally used such as ultrasonic inspection, X-ray, acoustic emission tests, among other techniques. The traditional techniques may even have a good instrumental apparatus and be well formulated for structural integrity assessment; however, these techniques cannot meet growing industrial needs, even more so when structures are in motion. The purpose of this paper is to demonstrate artificial immune systems (AISs), ate and strengthen the emergence of an innovative technological tool, the biological immune systems and AISs, and these are presented as computing methods in the field of structural health monitoring (SHM).

Design/methodology/approach

The concept of SHM is based on a fault detection mechanism used in industries, and in other applications, involving the observation of a structure or a mechanical system. This observation occurs through the dynamic response of periodic measurements, later related to the statistical analysis, determining the integrity of the system. This study aims to develop a methodology that identifies and classifies a signal in normal signals or in faults, using an algorithm based on artificial immunological systems, being the negative selection algorithm, and later, this algorithm classifies the failures in probabilities of failure and degree of fault severity. The results demonstrate that the proposed SHM is efficient and robust for prognosis and failure detection.

Findings

The present study aims to develop different fast access methodologies for the prognosis and detection of failures, classifying and judging the types of failures based on AISs. The authors declare that the present study was neither published in any other vehicle of scientific information nor is under consideration for publication in another scientific journal, and that this paper strictly followed the ethical procedures of research and publication as requested.

Originality/value

This study is original by the fact that conventional structural integrity monitoring methods need improvements, which intelligent computing techniques can satisfy. Intelligent techniques are tools inspired by natural and/or biological processes and belong to the field of computational intelligence. They present good results in problems of pattern recognition and diagnosis and thus can be adapted to solve problems of monitoring and identifying structural failures in mechanical and aeronautical engineering. Thus, the proposal of this study demonstrates and strengthens the emergence of an innovative technological tool, the biological immune system and the AIS, and these are presented as computation methods in the field of SHM in rotating systems – a topic not yet addressed in the literature.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 May 2011

S. Thirunavukkarasu, B.P.C. Rao, G.K. Sharma, Viswa Chaithanya, C. Babu Rao, T. Jayakumar, Baldev Raj, Aravinda Pai, T.K. Mitra and Pandurang Jadhav

Development of non‐destructive methodology for detection of arc strike, spatter and fusion type of welding defects which may form on steam generator (SG) tubes that are in close…

Abstract

Purpose

Development of non‐destructive methodology for detection of arc strike, spatter and fusion type of welding defects which may form on steam generator (SG) tubes that are in close proximity to the circumferential shell welds. Such defects, especially fusion‐type defects, are detrimental to the structural integrity of the SG. This paper aims to focus on this problem.

Design/methodology/approach

This paper presents a new methodology for non‐destructive detection of arc strike, spatter and fusion type of welding defects. This methodology uses remote field eddy current (RFEC) ultrasonic non‐destructive techniques and K‐means clustering.

Findings

Distinctly different RFEC signals have been observed for the three types of defects and this information has been effectively utilized for automated identification of weld fusion which produces two back‐wall echoes in ultrasonic A‐scan signals. The methodology can readily distinguish fusion‐type defect from arc strike and spatter type of defects.

Originality/value

The methodology is unique as there is no standard guideline for non‐destructive evaluation of peripheral tubes after shell welding to detect arc strike, spatter and fusion type of welding defects.

Details

International Journal of Structural Integrity, vol. 2 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 9000