Search results

1 – 10 of over 1000
Article
Publication date: 16 April 2024

Chaofan Wang, Yanmin Jia and Xue Zhao

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted…

Abstract

Purpose

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted. Seismic fragility analysis has an important role in seismic hazard evaluation. In this paper, the seismic fragility of sleeve connected prefabricated column is analyzed.

Design/methodology/approach

A model for predicting the seismic demand on sleeve connected prefabricated columns has been created by incorporating engineering demand parameters (EDP) and probabilities of seismic failure. The incremental dynamics analysis (IDA) curve clusters of this type of column were obtained using finite element analysis. The seismic fragility curve is obtained by regression of Exponential and Logical Function Model.

Findings

The IDA curve cluster gradually increased the dispersion after a peak ground acceleration (PGA) of 0.3 g was reached. For both columns, the relative displacement of the top of the column significantly changed after reaching 50 mm. The seismic fragility of the prefabricated column with the sleeve placed in the cap (SPCA) was inadequate.

Originality/value

The sleeve was placed in the column to overcome the seismic fragility of prefabricated columns effectively. In practical engineering, it is advisable to utilize these columns in regions susceptible to earthquakes and characterized by high seismic intensity levels in order to mitigate the risk of structural damage resulting from ground motion.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 November 2022

Nursyamsi Nursyamsi, Johannes Tarigan, Muhammad Aswin, Badorul Hisham Abu Bakar and Harianto Hardjasaputra

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading…

Abstract

Purpose

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading, inadequate design, poor work execution, fire, storm, earthquakes etc. Therefore, repairing and strengthening is one way to improve damaged structures, so that they can be reutilized. In this research, the use of an ultra high-performance fibre-reinforced concrete (UHPFRC) layer is proposed as a strengthening material to rehabilitate damaged-RC beams. Different strengthening schemes pertaining to the structural performance of the retrofitted RC beams due to the flexural load were investigated.

Design/methodology/approach

A total of 13 normal RC beams were prepared. All the beams were subjected to a four-point flexural test. One beam was selected as the control beam and tested to failure, whereas the remaining beams were tested under a load of up to 50% of the ultimate load capacity of the control beam. The damaged beams were then strengthened using a UHPFRC layer with two different schemes; strip-shape and U-shape schemes, before all the beams were tested to failure.

Findings

Based on the test results, the control beam and all strengthened beams failed in the flexural mode. Compared to the control beam, the damaged-RC beams strengthened using the strip-shape scheme provided an increase in the ultimate load capacity ranging from 14.50% to 43.48% (or an increase of 1.1450 to 1.4348 times), whereas for the U-shape scheme beams ranged from 48.70% to 149.37% (or an increase of 1.4870–2.4937 times). The U-shape scheme was more effective in rehabilitating the damaged-RC beams. The UHPFRC mixtures are workable, as well easy to place and cast into the formworks. Furthermore, the damaged-RC beams strengthened using strip-shape scheme and U-shape scheme generated ductility factors of greater than 4 and 3, respectively. According to Eurocode8, these values are suitable for seismically active regions. Therefore, the strengthened damaged-RC beams under this study can quite feasibly be used in such regions.

Research limitations/implications

Observations of crack patterns were not accompanied by measurements of crack widths due to the unavailability of a microcrack meter in the laboratory. The cost of the strengthening system application were not evaluated in this study, so the users should consider wisely related to the application of this method on the constructions.

Practical implications

Rehabilitation of the damaged-RC beams exhibited an adequate structural performance, where all strengthened RC beams fail in the flexural mode, as well as having increment in the failure load capacity and ductility. So, the used strengthening system in this study can be applied for the building construction in the seismic regions.

Social implications

Aside from equipment, application of this strengthening system need also the labours.

Originality/value

The use of sand blasting on the surfaces of the damaged-RC beams, as well as the application of UHPFRC layers of different thicknesses and shapes to strengthen the damaged-RC beams, provides a novel innovation in the strengthening of damaged-RC beams, which can be applicable to either bridge or building constructions.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Content available
Article
Publication date: 8 April 2024

José A.F.O. Correia and Shun-Peng Zhu

Abstract

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Article
Publication date: 7 November 2022

Buddhini Ginigaddara, Srinath Perera, Yingbin Feng, Payam Rahnamayiezekavat and Mike Kagioglou

Industry 4.0 is exacerbating the need for offsite construction (OSC) adoption, and this rapid transformation is pushing the boundaries of construction skills towards extensive…

Abstract

Purpose

Industry 4.0 is exacerbating the need for offsite construction (OSC) adoption, and this rapid transformation is pushing the boundaries of construction skills towards extensive modernisation. The adoption of this modern production strategy by the construction industry would redefine the position of OSC. This study aims to examine whether the existing skills are capable of satisfying the needs of different OSC types.

Design/methodology/approach

A critical literature review evaluated the impact of transformative technology on OSC skills. An existing industry standard OSC skill classification was used as the basis to develop a master list that recognises emerging and diminishing OSC skills. The master list recognises 67 OSC skills under six skill categories: managers, professionals, technicians and trade workers, clerical and administrative workers, machinery operators and drivers and labourers. The skills data was extracted from a series of 13 case studies using document reviews and semi-structured interviews with project stakeholders.

Findings

The multiple case study evaluation recognised 13 redundant skills and 16 emerging OSC skills such as architects with building information modelling and design for manufacture and assembly knowledge, architects specialised in design and logistics integration, advanced OSC technical skills, factory operators, OSC estimators, technicians for three dimensional visualisation and computer numeric control operators. Interview findings assessed the current state and future directions for OSC skills development. Findings indicate that the prevailing skills are not adequate to readily relocate construction activities from onsite to offsite.

Originality/value

To the best of the authors’ knowledge, this research is one of the first studies that recognises the major differences in skill requirements for non-volumetric and volumetric OSC types.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 25 March 2022

Innocent Chigozie Osuizugbo, Kevin Chuks Okolie and Olalekan Shamsideen Oshodi

Improving buildability of building designs with the aid of buildability assessment is essential because of the effect of designs on construction. Despite the plethora of research…

Abstract

Purpose

Improving buildability of building designs with the aid of buildability assessment is essential because of the effect of designs on construction. Despite the plethora of research into buildability reported over the years, a review of the literature shown a dearth of research into the factors supporting the implementation of buildability assessment. Because buildability assessment has been confirmed to be highly beneficial to construction business, this study aims to investigate the factors supporting the implementation of buildability assessment as a tool for buildability improvement using Nigeria as a representative case.

Design/methodology/approach

Survey research method was adopted for the study. Questionnaires were administered to a purposively selected group of architects, engineers, builders and quantity surveyors involved in construction project delivery within client, consulting and contracting organisations in Nigeria. A total of 368 questionnaires were distributed among the sampled participants, out of which, a total of 219 representing 60% were sufficiently filled and returned. Data collected were analysed using inferential and descriptive statistics.

Findings

The results revealed owner’s commitment, clients’ awareness of the benefits of conducting buildability assessment on building design, unity amongst different professionals in the construction industry, designers consider buildability important, adequate coordination amongst different design disciplines, adequate channel for co-ordination and communication between designers and constructors at the design stage and adequate support from the government as the top most seven factors supporting buildability assessment implementation in construction sector of Nigeria. Secondly, the results from the research revealed that there is no statistically significant difference in factors supporting buildability assessment implementation in construction between clients and consulting and contracting construction organisations in Nigeria.

Originality/value

The findings provide in-depth insight of the factors supporting the implementation of buildability assessment in construction that can help principal stakeholders in construction to facilitate development of strategies required in supporting the adoption and implementation of buildability assessment tool for buildability improvement.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 14 November 2022

Abdul Hannan Qureshi, Wesam Salah Alaloul, Wong Kai Wing, Syed Saad, Khalid Mhmoud Alzubi and Muhammad Ali Musarat

Rebar is the prime component of reinforced concrete structures, and rebar monitoring is a time-consuming and technical job. With the emergence of the fourth industrial revolution…

Abstract

Purpose

Rebar is the prime component of reinforced concrete structures, and rebar monitoring is a time-consuming and technical job. With the emergence of the fourth industrial revolution, the construction industry practices have evolved toward digitalization. Still, hesitation remains among stakeholders toward the adoption of advanced technologies and one of the significant reasons is the unavailability of knowledge frameworks and implementation guidelines. This study aims to investigate technical factors impacting automated monitoring of rebar for the understanding, confidence gain and effective implementation by construction industry stakeholders.

Design/methodology/approach

A structured study pipeline has been adopted, which includes a systematic literature collection, semistructured interviews, pilot survey, questionnaire survey and statistical analyses via merging two techniques, i.e. structural equation modeling and relative importance index.

Findings

The achieved model highlights “digital images” and “scanning” as two main categories being adopted for automated rebar monitoring. Moreover, “external influence”, “data-capturing”, “image quality”, and “environment” have been identified as the main factors under “digital images”. On the other hand, “object distance”, “rebar shape”, “occlusion” and “rebar spacing” have been highlighted as the main contributing factors under “scanning”.

Originality/value

The study provides a base guideline for the construction industry stakeholders to gain confidence in automated monitoring of rebar via vision-based technologies and effective implementation of the progress-monitoring processes. This study, via structured data collection, performed qualitative and quantitative analyses to investigate technical factors for effective rebar monitoring via vision-based technologies in the form of a mathematical model.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 14 June 2022

Samuel Adeniyi Adekunle, Clinton Ohis Aigbavboa and Obuks Augustine Ejohwomu

The implementation of BIM in the construction industry requires the coevolution of the various aspects of the BIM ecosystem. The human dimension is a very important dimension of…

1588

Abstract

Purpose

The implementation of BIM in the construction industry requires the coevolution of the various aspects of the BIM ecosystem. The human dimension is a very important dimension of the ecosystem necessary for BIM implementation. It is imperative to study this aspect of the BIM ecosystem both from the employer perspective and employee availability to provide insights for stakeholders (job seekers, employers, students, researchers, policymakers, higher education institutions, career advisors and curriculum developers) interested in the labour market dynamics.

Design/methodology/approach

To understand the BIM actor roles through the employer lens and the actual BIM actors in the construction industry, this study employed data mining of job adverts from LinkedIn and Mncjobs website. Content analysis was employed to gain insights into the data collected. Also, through a quantitative approach, the existing BIM actor roles were identified.

Findings

The study identified the employers' expectations of BIM actors; however, it is noted that the BIM actor recruitment space is still a loose one as recruiters put out open advertisements to get a large pool of applicants. From the data analysed, it is concluded that the BIM actor role is not an entirely new profession. However, it simply exists as construction industry professionals with BIM tool skills. Also, the professional development route is not well defined yet.

Originality/value

This study presents a realistic angle to BIM actor roles hence enhancing BIM implementation from the human perspective. The findings present an insight into the preferred against the actual.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 February 2022

Bankole Osita Awuzie, Zwelinzima P. Mcwari, Progress Shingai Chigangacha, Clinton Ohis Aigbavboa, Theo C. Haupt and Lovelin Obi

An increase in outsourcing of consultancy services has been observed during procurement and delivery of public-sector infrastructure projects. However, the incidence of project…

Abstract

Purpose

An increase in outsourcing of consultancy services has been observed during procurement and delivery of public-sector infrastructure projects. However, the incidence of project failure has continued unabated despite this shift by public-sector entities. Also, there appears to be limited literature focussed on seeking to provide the rationale governing the decision to outsource or insource consultancy services by public-sector organisations. The purpose of this study was to appraise the performance of public-sector projects in which consultancy services have been outsourced or insourced. These are the gaps which this study was undertaken to fill.

Design/methodology/approach

A grounded theory methodology (GTM) research design was adopted based on the nature of evidence sought and gathered from a Provincial Department of Public Works and Infrastructure (PDPWI) in South Africa. Data was obtained from a mixture of semi-structured interviews and project-specific documents spanning a five-year period and was analysed according to the procedures associated with GTM. Accordingly, open coding, axial coding and pattern matching were carried out at several intervals to develop categories and themes.

Findings

The findings of the study showed the absence of a structured approach within the PDPWI for facilitating decisions pertaining to outsourcing or insourcing consultancy services within construction projects. Furthermore, the study established that both approaches yielded similar results across all performance facets of cost, time and quality. In addition, a detailed insight into the steps required for the successful application of GTM in built environment research has been provided in the study.

Originality/value

Limited studies have been undertaken to compare the impact of either outsourced or insourced services on the organisational and project performance. This was the gap to which the study reported in this paper was undertaken to contribute.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 25 April 2024

H.G. Di, Pingbao Xu, Quanmei Gong, Huiji Guo and Guangbei Su

This study establishes a method for predicting ground vibrations caused by railway tunnels in unsaturated soils with spatial variability.

Abstract

Purpose

This study establishes a method for predicting ground vibrations caused by railway tunnels in unsaturated soils with spatial variability.

Design/methodology/approach

First, an improved 2.5D finite-element-method-perfect-matching-layer (FEM-PML) model is proposed. The Galerkin method is used to derive the finite element expression in the ub-pl-pg format for unsaturated soil. Unlike the ub-v-w format, which has nine degrees of freedom per node, the ub-pl-pg format has only five degrees of freedom per node; this significantly enhances the calculation efficiency. The stretching function of the PML is adopted to handle the unlimited boundary domain. Additionally, the 2.5D FEM-PML model couples the tunnel, vehicle and track structures. Next, the spatial variability of the soil parameters is simulated by random fields using the Monte Carlo method. By incorporating random fields of soil parameters into the 2.5D FEM-PML model, the effect of soil spatial variability on ground vibrations is demonstrated using a case study.

Findings

The spatial variability of the soil parameters primarily affected the vibration acceleration amplitude but had a minor effect on its spatial distribution and attenuation over time. In addition, ground vibration acceleration was more affected by the spatial variability of the soil bulk modulus of compressibility than by that of saturation.

Originality/value

Using the 2.5D FEM-PML model in the ub-pl-pg format of unsaturated soil enhances the computational efficiency. On this basis, with the random fields established by Monte Carlo simulation, the model can calculate the reliability of soil dynamics, which was rarely considered by previous models.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 March 2024

Aminuddin Suhaimi, Izni Syahrizal Ibrahim and Mariyana Aida Ab Kadir

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to…

Abstract

Purpose

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to understand pre-loading's role in replicating RC beams' actual responses to fire, aiming to improve fire testing protocols and structural fire engineering design.

Design/methodology/approach

This review systematically aggregates data from existing literature on the fire response of RC beams, comparing scenarios with (WP) and without pre-loading (WOP). Through statistical tools like the two-tailed t-test and Mann–Whitney U-test, it assesses deflection extremes. The study further examines structural responses, including flexural and shear behavior, ultimate load capacity, post-yield behavior, stiffness degradation and failure modes. The approach concludes with a statistical forecast of ideal pre-load levels to elevate experimental precision and enhance fire safety standards.

Findings

The review concludes that pre-loading profoundly affects the fire response of RC beams, suggesting a 35%–65% structural capacity range for realistic simulations. The review also recommended the initial crack load as an alternative metric for determining the pre-loading impact. Crucially, it highlights that pre-loading not only influences the fire response but also significantly alters the overall structural behavior of the RC beams.

Originality/value

The review advances structural fire engineering with an in-depth analysis of pre-loading's impact on RC beams during fire exposure, establishing a validated pre-load range through thorough statistical analysis and examination of previous research. It refines experimental methodologies and structural design accuracy, ultimately bolstering fire safety protocols.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 1000