Search results
1 – 10 of over 13000António A.R. Henriques, Francisco Calheiros and Joaquim A. Figueiras
A contribution to the definition of a novel safety format for the design of concrete structures based on non‐linear methods of analysis is the main purpose of this work. A…
Abstract
A contribution to the definition of a novel safety format for the design of concrete structures based on non‐linear methods of analysis is the main purpose of this work. A brief discussion of design formats proposed by codes of practice is introduced. Probabilistic analyses of current concrete frames are performed and the corresponding results are used as a basis to derive simplified and coherent practical rules. The analyses have been carried out taking into account the non‐linear material behaviour and the variability of the structural parameters by simulation of probabilistic density functions. A simple procedure is proposed to evaluate the structural safety of concrete frame structures. Mean values are recommended to characterise the material properties to be used in the analysis and a global safety factor is defined to evaluate the structural design resistance.
Details
Keywords
Seeks to examine the bond strength of a large range of structural polypropylene fibres, as used in concrete, to determine the most effective fibre capable of transmitting…
Abstract
Purpose
Seeks to examine the bond strength of a large range of structural polypropylene fibres, as used in concrete, to determine the most effective fibre capable of transmitting load (N/mm2) between fibre and cement within the concrete matrix.
Design/methodology/approach
Following fibre selection characterised by the highest bond strength, determined from a series of pull out tests, BS flexural tests were carried out using high bond strength fibres (40 mm × 0.9 mm diameter used at 6 kg/m3) to determine whether or not structural polypropylene fibres had any effect on the ultimate flexural strength of fibre‐reinforced concrete, when compared with the plain control sample. Fibre orientation, type of rupture failure mode and post‐crack performance were examined.
Findings
Even structural fibre dispersion was found to be best achieved with the use of monofilament polypropylene fibres (19 mm × 22 micron used at 0.9 × kg/m3) in addition to the 6 kg/m3 structural fibre dose. Structural polypropylene fibres were found not to provide additional flexural strength however, they did provide post‐crack control, limiting the crack width with subsequent enhanced durability that in turn will provide lower life cycle costs.
Practical implications
In addition to increased durability the use of fibre reinforcement negates the need to place steel reinforcement bars.
Originality/value
Investigates the ambiguity in literature between claims made by different investigators regarding the effects of polypropylene fibres on compressive and flexural strengths.
Details
Keywords
Arka Ghosh, David John Edwards, M. Reza Hosseini, Riyadh Al-Ameri, Jemal Abawajy and Wellington Didibhuku Thwala
This research paper adopts the fundamental tenets of advanced technologies in industry 4.0 to monitor the structural health of concrete beam members using cost-effective…
Abstract
Purpose
This research paper adopts the fundamental tenets of advanced technologies in industry 4.0 to monitor the structural health of concrete beam members using cost-effective non-destructive technologies. In so doing, the work illustrates how a coalescence of low-cost digital technologies can seamlessly integrate to solve practical construction problems.
Design/methodology/approach
A mixed philosophies epistemological design is adopted to implement the empirical quantitative analysis of “real-time” data collected via sensor-based technologies streamed through a Raspberry Pi and uploaded onto a cloud-based system. Data was analysed using a hybrid approach that combined both vibration-characteristic-based method and linear variable differential transducers (LVDT).
Findings
The research utilises a novel digital research approach for accurately detecting and recording the localisation of structural cracks in concrete beams. This non-destructive low-cost approach was shown to perform with a high degree of accuracy and precision, as verified by the LVDT measurements. This research is testament to the fact that as technological advancements progress at an exponential rate, the cost of implementation continues to reduce to produce higher-accuracy “mass-market” solutions for industry practitioners.
Originality/value
Accurate structural health monitoring of concrete structures necessitates expensive equipment, complex signal processing and skilled operator. The concrete industry is in dire need of a simple but reliable technique that can reduce the testing time, cost and complexity of maintenance of structures. This was the first experiment of its kind that seeks to develop an unconventional approach to solve the maintenance problem associated with concrete structures. This study merges industry 4.0 digital technologies with a novel low-cost and automated hybrid analysis for real-time structural health monitoring of concrete beams by fusing several multidisciplinary approaches into one integral technological configuration.
Details
Keywords
Giuseppina Uva, Francesco Porco, Andrea Fiore and Mauro Mezzina
The purpose of this paper is to collect the numerical elaboration of resistances measured on cubes made during the concrete casting and on cores extracted after the…
Abstract
Purpose
The purpose of this paper is to collect the numerical elaboration of resistances measured on cubes made during the concrete casting and on cores extracted after the completion of the structure, for the concrete used in the construction of the “Esaro” Dam facilities (Cosenza, Italy). In addition to the statistical treatment of the sample, aimed at assessing the analytical congruence with the homogeneous classes provided in the design, the influence of compaction degree on in place strength value was qualitatively evaluated.
Design/methodology/approach
The reliability of the concrete during the construction phases was evaluated by two analytical control types according to Italian and European technical rules: “production controls” based on statistical processing of resistance values; “laying controls” that serve to assess the compaction degree with a statistical approach.
Findings
Results highlighted in the assessing of compliance checks of the mixture, the fundamental relation between statistical approach and concrete laying control. They become important when is necessary to quantify, especially in the case of great infrastructure, the gap between “potential” and “structural” concrete.
Originality/value
The advantage obtained by controlling the compaction degree in the construction phase is unquestionable. Specifically, it might allow a reduction of the drilling cores, and so minor structural damage, especially for relatively recent structures favouring extensive non-destructive tests.
Details
Keywords
Sergiu Andrei Baetu, A H Barbat and Ioan Petru Ciongradi
The purpose of this paper is to investigate a dissipative reinforced concrete structural wall that can improve the behavior of a tall multi-storey building. The main…
Abstract
Purpose
The purpose of this paper is to investigate a dissipative reinforced concrete structural wall that can improve the behavior of a tall multi-storey building. The main objective is to evaluate the damage of a dissipative wall in comparison with that of a solid wall.
Design/methodology/approach
In this paper, a comparative nonlinear dynamic analysis between a dissipative wall and a solid wall is performed by means of SAP2000 software and using a layer model. The solution to increase the seismic performance of a reinforced concrete structural wall is to create a slit zone with short connections. The short connections are introduced as a link element with multi-linear pivot hysteretic plasticity behavior. The behavior of these short connections is modeled using the finite element software ANSYS 12. In this study, the authors propose to evaluate the damage of reinforced concrete slit walls with short connections using seismic analysis.
Findings
Using the computational model created in the second section of the paper, a seismic analysis of a dissipative wall from a multi-storey building was done in the third section. From the results obtained, the advantages of the proposed model are observed.
Originality/value
A simple computational model was created that consume low processing resources and reduces processing time for a dynamic pushover analysis. Unlike other studies on slit walls with short connections, which are focussed mostly on the nonlinear dynamic behavior of the short connections, in this paper the authors take into consideration the whole structural system, wall and connections.
Details
Keywords
Thomas Gernay and Mohamed Salah Dimia
The paper aims to give an insight into the behaviour of reinforced concrete columns during and after the cooling phase of a fire. The study is based on numerical…
Abstract
Purpose
The paper aims to give an insight into the behaviour of reinforced concrete columns during and after the cooling phase of a fire. The study is based on numerical simulations as these tools are frequently used in structural engineering. As the reliability of numerical analysis largely depends on the validity of the constitutive models, the development of a concrete model suitable for natural fire analysis is addressed in the study.
Design/methodology/approach
The paper proposes theoretical considerations supported by numerical examples to discuss the capabilities and limitations of different classes of concrete models and eventually to develop a new concrete model that meets the requirements in case of natural fire analysis. Then, the study performs numerical simulations of concrete columns subjected to natural fire using the new concrete model. A parametric analysis allows for determining the main factors that affect the structural behaviour in cooling.
Findings
Failure of concrete columns during and after the cooling phase of a fire is a possible event. The most critical situations with respect to delayed failure arise for short fires and for columns with low slenderness or massive sections. The concrete model used in the simulations is of prime importance and the use of the Eurocode model would lead to unsafe results.
Practical implications
The paper includes implications for the assessment of the fire resistance of concrete elements in a performance‐based environment.
Originality/value
The paper provides original information about the risk of structural collapse during cooling.
Details
Keywords
Sepani Senaratne, Olivia Mirza, Gregory Lambrousis and Alessandro Fernandez-Soncini
The use of recycled aggregates (RA) has been explored to lead to a more sustainable future. The paper investigates on a sustainable concrete mix incorporating steel fibres…
Abstract
Purpose
The use of recycled aggregates (RA) has been explored to lead to a more sustainable future. The paper investigates on a sustainable concrete mix incorporating steel fibres (SF) and RA to provide an alternative to traditional natural aggregate concrete for structural applications. This paper aims to explore the feasibility of combining RA and SF in structural applications in terms of strength, cost and industry perspectives.
Design/methodology/approach
A mixed research approach is established with two phases. Phase 1 aims to identify an optimum material combination that satisfies the structural strength requirements and to identify the costs in its optimum combination. Phase 2 involves qualitative interviews with key industry parties to explore their perspective and identify various enablers and barriers for this material.
Findings
The optimum combination of 30 per cent RA replacement and 0.3 SF volume content has been identified through laboratory testing. It was noted that there would be a direct additional cost because of SF addition. However, when other benefits such as reduction in transportation costs and landfill dumping fees were considered, an overall cost saving could be achieved. Consequently, the key industry practitioners’ perspectives for this material have been gathered through qualitative interviews. Several enablers and barriers were identified through these interviews.
Originality/value
Even though, there are various research attempts on improving RA for structural purpose by adding different additives, a holistic study that incorporate cost effects and the industry perspectives was lacking and is addressed in this current study. In particular, industry perspectives lead to refocus research directions and get closer to the realisation of a sustainable construction industry.
Details
Keywords
Khaled Sobhan, Dronnadula V. Reddy and Fernando Martinez
The exposure of reinforced concrete structures such as high-rise residential buildings, bridges and piers to saline environments, including exposure to de-icing salts…
Abstract
Purpose
The exposure of reinforced concrete structures such as high-rise residential buildings, bridges and piers to saline environments, including exposure to de-icing salts, increases their susceptibility to corrosion of the reinforcing steel. The exposure to fire can further deteriorate the structural integrity of corroded concrete structures. This combined effect of corrosion damage and fire exposure is not generally addressed in the structural concrete design codes. The synergistic combination of the effects of corrosion and fire forms the basis of this paper.
Design/methodology/approach
Concrete beam specimens with different strengths were prepared, moist-cured and corroded with impressed current. Later, they were “crack-scored” for corrosion evaluation, after which half were exposed to fire in a gas kiln. The fire damage was evaluated by nondestructive testing using ultrasonic pulse velocity. Next, all specimens were tested for residual flexural strength. They were then autopsied, and the level of corrosion was determined based on mass loss of the reinforcement.
Findings
For corroded specimens, the flexural capacity loss because of fire exposure increases as the compressive strength increases. In general, the higher the crack score, the higher the corresponding mass loss, unless some partial/segmental debonding of the reinforcement occurred. The degree of corrosion increases with decreasing compressive strength. The residual moment capacity, based on analytically determined capacities of uncorroded and nonfire-exposed beams, was significantly lower than those of uncorroded beams exposed to fire.
Originality/value
The combined effects of corrosion and fire on the mechanical properties of structural concrete are relatively unknown, and no guidance is available in the existing design codes to address this issue. Accordingly, the findings of the paper are expected to be valuable to both researchers and design engineers and can be regarded as the initial investigation on this topic.
Details
Keywords
Parthasarathi N. and Satyanarayanan K.S.
Technological innovations in the construction field correspond to a wider revolution in metropolitan life and in structural design. With the demand for advanced concrete…
Abstract
Purpose
Technological innovations in the construction field correspond to a wider revolution in metropolitan life and in structural design. With the demand for advanced concrete technology, the introduction of new reinforced materials in concrete, namely, iron, steel and other reinforcing elements. Reinforcement in concrete is developed in the centuries back and several advancements are being stirred to improvise the properties of the concrete through reinforcements. On the basis of this finding from the earlier research studies, a reinforcement methodology is practiced on the current study to investigate the deflection of the M30 mix concrete frame under thermal load conditions.
Design/methodology/approach
For the examination, corner and the middle frame are considered with the reinforcement provided on four zones with 16-mm diameter for compression and 8-mm diameter is used for the stirrup at 150 mm c/c spacing. The load is applied to the column with live and wall load of 3.5 kN/m and 14.7KN/m. The experimentation is carried out by the finite element analysis strategy in ABAQUS simulation software with five test conditions with the bare frame at single, two and three-bay infill. The model of the frame is developed and meshed with the meshing type of C3D8T under 8-node thermally coupled brick mesh type for the mesh size of 25 mm.
Findings
From the simulation outcome, the effect of thermal gradient on the reinforced concrete is analyzed and its structural properties are plotted as performance graphs in the result section.
Originality/value
Under the thermal load condition, the model is simulated for 180 min for five different cases and analyzed the deflection parameters such as deformation, stress and failure rate.
Details
Keywords
Saranya Ilango and Sunil Mahato
Concrete in-filled stainless steel square tubular column combines both the benefits of concrete and steel material, providing enhanced ductility and high compressive…
Abstract
Purpose
Concrete in-filled stainless steel square tubular column combines both the benefits of concrete and steel material, providing enhanced ductility and high compressive strength to the vertical structural members. Other advantages include high stiffness, better resistance to corrosion, increased pace of construction, enhanced bearing capacity, etc. The purpose of this paper is to understand the various behavioural aspects of concrete in-filled cold-formed duplex stainless steel (CI-CFDSS) square tubular column under axial compressive loads and to assess its structural performance.
Design/methodology/approach
In the current paper, the performance of CI-CFDSS square tubular column is numerically investigated under uniform static loading using finite element technique. The numerical study was based on an experimental investigation, which was carried out earlier, in order to study the effects of concrete strength and shape of stainless steel tube on the strength and behaviour of CI-CFDSS square tubular column. The experimental CI-CFDSS square tubular column has a length equal to 450 mm, breadth of 150 mm, width of 150 mm, thickness of 6 mm and a constant ratio of length to overall depth equal to 3. Numerical modelling of the experimental specimen was carried out using ABAQUS software by providing appropriate material properties. Non-linear finite element analysis was performed and the load vs axial deflection curve of the numerical CI-CFDSS square tubular column obtained was validated with the results of the experiment. In order to understand the behaviour of CI-CFDSS square tubular column under axial compressive loads, a parametric study was performed by varying the grade of concrete, type of stainless steel, thickness of stainless steel tube and shape of cross section. From the results, the performance of CI-CFDSS square tubular column was comparatively studied.
Findings
When the grade of concrete was increased the deformation capacity of the CI-CFDSS square tubular column reduced but showed better load carrying capacity. The steel tube made of duplex stainless steel exhibited enhanced performance in terms of load carrying capacity and axial deformation than the other forms, i.e. austenitic and ferritic stainless steel. The most suitable cross section for the CI-CFDSS square tubular column with respect to its performance is rectangular cross section and variation of the steel tube thickness led to the change of overall dimensions of the N-CI-CFDSS-SHS1C40 square tubular column showing marginal difference in performance.
Originality/value
The research work presented in this manuscript is authentic and could contribute to the understanding of the behavioural aspects of CI-CFDSS square tubular column under axial compressive loads.
Details