Search results

1 – 10 of over 52000
Article
Publication date: 3 July 2020

Ruben B.O. Acevedo, Klaudia Kantarowska, Edson Costa Santos and Marcio C. Fredel

This paper aims to generate a review of available techniques to measure Residual Stress (RS) in Ti6Al4V components made by Ti6Al4V.

Abstract

Purpose

This paper aims to generate a review of available techniques to measure Residual Stress (RS) in Ti6Al4V components made by Ti6Al4V.

Design/methodology/approach

State of the art; literature review in the field of Residual Stress measurement of Ti6Al4V parts made by selective laser melting (SLM).

Findings

Different Residual Stress measurement techniques were detailed, regarding its concept, advantages and limitations. Regarding all researched references, hole drilling (semi destructive) and X-ray diffraction (nondestructive) were the most cited techniques for Residual Stress measurement of Ti6Al4V parts made by SLM.

Originality/value

An extensive analysis of RS measurement techniques for Ti6Al4V parts made by SLM.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 17 December 2003

Norbert K Semmer, Simone Grebner and Achim Elfering

The preponderance of studies that rely on self-report for both independent (e.g. stressors) and dependent (e.g. well-being) variables is often deplored, as it creates problems of…

Abstract

The preponderance of studies that rely on self-report for both independent (e.g. stressors) and dependent (e.g. well-being) variables is often deplored, as it creates problems of common method variance, which may lead to inflated, or even spurious, correlations and predictions. It is sometimes suggested that alternative measures should yield more “objective” information on the phenomena under investigation. We discuss this issue with regard to: (a) observational measures of working conditions; (b) physiological measures of strain; and (c) event-based “self-observation” on a micro-level. We argue that these methods are not necessarily “objective.” Like self-report, they are influenced by a plethora of factors; and measurement artifacts can easily be produced. All this can make their interpretation quite difficult, and the conclusion that lack of convergence with self-report automatically invalidates self-report is not necessarily warranted. Especially with regard to physiological measures, one has to keep in mind that they refer to a different response level that follows its own laws and is only loosely coupled with psychological responses. Therefore, replacement is not a promising way to get more reliable estimates of stressor-strain relationships. We argue instead that each method contains both substantive and error variance, and that a combination of various methods seems more auspicious. After discussing advantages and pitfalls of observational, physiological, and self-observational measures, respectively, we report empirical examples from our own research on each of these methods, which are meant to illustrate both the advantages and the problems associated with them. They strengthen the overall conclusion that there is no “substitute” for self-report (which often is necessary to be able to interpret data from other methods, most notably physiological ones). They also illustrate that collecting such data is quite cumbersome, and that a number of conditions have to be carefully considered before using them, and we report some problems we encountered in this research. Altogether, we conclude that self-report measures, if carefully constructed, are better than their reputation, but that the optimal way is to complement them with other measures.

Details

Emotional and Physiological Processes and Positive Intervention Strategies
Type: Book
ISBN: 978-1-84950-238-2

Open Access
Article
Publication date: 7 October 2021

Vadym Mozgovoy

The authors aim to develop a conceptual framework for longitudinal estimation of stress-related states in the wild (IW), based on the machine learning (ML) algorithms that use…

Abstract

Purpose

The authors aim to develop a conceptual framework for longitudinal estimation of stress-related states in the wild (IW), based on the machine learning (ML) algorithms that use physiological and non-physiological bio-sensor data.

Design/methodology/approach

The authors propose a conceptual framework for longitudinal estimation of stress-related states consisting of four blocks: (1) identification; (2) validation; (3) measurement and (4) visualization. The authors implement each step of the proposed conceptual framework, using the example of Gaussian mixture model (GMM) and K-means algorithm. These ML algorithms are trained on the data of 18 workers from the public administration sector who wore biometric devices for about two months.

Findings

The authors confirm the convergent validity of a proposed conceptual framework IW. Empirical data analysis suggests that two-cluster models achieve five-fold cross-validation accuracy exceeding 70% in identifying stress. Coefficient of accuracy decreases for three-cluster models achieving around 45%. The authors conclude that identification models may serve to derive longitudinal stress-related measures.

Research limitations/implications

Proposed conceptual framework may guide researchers in creating validated stress-related indicators. At the same time, physiological sensing of stress through identification models is limited because of subject-specific reactions to stressors.

Practical implications

Longitudinal indicators on stress allow estimation of long-term impact coming from external environment on stress-related states. Such stress-related indicators can become an integral part of mobile/web/computer applications supporting stress management programs.

Social implications

Timely identification of excessive stress may improve individual well-being and prevent development stress-related diseases.

Originality/value

The study develops a novel conceptual framework for longitudinal estimation of stress-related states using physiological and non-physiological bio-sensor data, given that scientific knowledge on validated longitudinal indicators of stress is in emergent state.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 1 January 1993

A. Bjorneklett, L. Halbo, H. Kristiansen, L.M. Nilsen, T. Storfossene and T. Tuhus

A new hybrid substrate technology for power electronic applications has been characterised by thermal resistance and mechanical stress measurements. The new substrate utilises…

Abstract

A new hybrid substrate technology for power electronic applications has been characterised by thermal resistance and mechanical stress measurements. The new substrate utilises thermal spray technology for deposition of dielectric layer and electrical conductors. The results are compared with the more established technology of alumina substrates with direct copper bonding (DCB) metallisation. Silicon test chips for thermal resistance and mechanical stress measurement were used for the characterisation. The experimental results were compared with finite element analysis and a reasonable agreement was found.

Details

Microelectronics International, vol. 10 no. 1
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 14 November 2008

A. Belahcen and A. Arkkio

The purpose of this paper is to find out how to model the effect of mechanical stresses on the magnetic properties of electrical steel used in electromagnetic devices and…

Abstract

Purpose

The purpose of this paper is to find out how to model the effect of mechanical stresses on the magnetic properties of electrical steel used in electromagnetic devices and especially in electrical machines. Further, the effect of these stresses on the operation of the machines should be studied.

Design/methodology/approach

The constitutive equation of the electrical steel is usually modeled as a non linear relation between the magnetic flux density and the magnetic field strength. In this research, this constitutive equation is developed to account for the mechanical stresses through a parametric relationship, the parameters of which are estimated from measurements. Further, the constitutive equation is used in a magnetomechanically coupled numerical simulation of an induction machine.

Findings

The mechanical stresses degrade the properties of the electrical steel and increase the magnetization current in electrical machines. This leads to a decrease in the efficiency of these machines.

Research limitations/implications

The effect of mechanical stresses is studied from the point of view of magnetization properties. This work does not model the effect of stresses on the specific losses of the material. Such a research is still going on.

Originality/value

The effect of mechanical stress on the magnetic properties of the materials used in electrical machines is modeled in an easy and original way, which allow for its application in numerical simulation and analysis of these machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 October 2022

Sidney Newton

The purpose of this study is to highlight and demonstrate how the study of stress and related responses in construction can best be measured and benchmarked effectively.

Abstract

Purpose

The purpose of this study is to highlight and demonstrate how the study of stress and related responses in construction can best be measured and benchmarked effectively.

Design/methodology/approach

A range of perceptual and physiological measures are obtained across different time periods and during different activities in a fieldwork setting. Differences in the empirical results are analysed and implications for future studies of stress discussed.

Findings

The results of this study strongly support the use of multiple psychometrics and biosensors whenever biometrics are included in the study of stress. Perceptual, physiological and environmental factors are all shown to act in concert to impact stress. Strong conclusions on the potential drivers of stress should then only be considered when consistent results apply across multiple metrics, time periods and activities.

Research limitations/implications

Stress is an incredibly complex condition. This study demonstrates why many current applications of biosensors to study stress in construction are not up to the task and provides empirical evidence on how future studies can be significantly improved.

Originality/value

To the best of the author’s knowledge, this is the first study to focus explicitly on demonstrating the need for multiple research instruments and settings when studying stress or related conditions in construction.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 5 November 2018

Adrian Low and Rollin McCraty

Research on workplace stress measurements varied without much accuracy and effectiveness. The purpose of this paper is to introduce a new quantitative assessment tool emWave Pro…

3842

Abstract

Purpose

Research on workplace stress measurements varied without much accuracy and effectiveness. The purpose of this paper is to introduce a new quantitative assessment tool emWave Pro Plus (Institute of HeartMath) and compare heart rate variability (HRV) results with the Personal and Organizational Quality Assessment (POQA) and the Perceived Stress Scale (PSS).

Design/methodology/approach

This research opted for a correlational study which involves 85 full-time employees who were working at least 40 h per week in a large corporation participated in this study. The POQA and PSS were used to correlate with HRV.

Findings

Astonishing findings emerged in this study. Significant positive correlations were found between emotional stress and HRV, and between intention to quit and HRV. In other words, the researchers have to make sense the following surprising findings: the higher the emotional stress an employee faces, the healthier they are. Healthier employees may have higher intentions of quitting their jobs. The surprising results may be attributed to personality, culture, emotional regulation and age among others.

Originality/value

This research fulfills an identified need to validate quantifiable stress measurements especially in a corporate environment. The research also shows promising results, and future studies should continue to tap into HRV as an objective measure of mental health and workplace stress.

Details

Public Administration and Policy, vol. 21 no. 2
Type: Research Article
ISSN: 1727-2645

Keywords

Article
Publication date: 5 July 2021

Rodrigo Magana Carranza, Joseph Robinson, Ian Ashton, Peter Fox, Christopher Sutcliffe and Eann Patterson

The purpose of this paper is to detail the design and first use of a force transducer device to study the development of forces during the laser-powder bed fusion (L-PBF) process…

Abstract

Purpose

The purpose of this paper is to detail the design and first use of a force transducer device to study the development of forces during the laser-powder bed fusion (L-PBF) process from which residual stresses can be inferred.

Design/methodology/approach

The proposed novel device consists of an array of load cells for in-situ measurement of forces over time during the L-PBF additive manufacturing process. Measurements of the developed forces layer by layer were recorded in a first build using a 67-degree rotating scan strategy using Inconel 625 build material.

Findings

Preliminary experimental results from in-situ measurements using a 67-degree rotating scan strategy showed that the forces induced in the first five layers represented approximately 80% of the maximum on completion of the build and were distributed such as to induce concave deformation of the part, i.e. tension in the centre and compression at the edges of the part.

Originality/value

This paper describes a novel device for in-process measurement of the spatial distribution and time-varying nature of the forces induced during the L-PBF process as well as an evaluation of the residual forces following the completion of the build.

Details

Rapid Prototyping Journal, vol. 27 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 March 2011

Ulrike C. Heckenberger, Elke Hombergsmeier, Vitus Holzinger and Wolfgang von Bestenbostel

Laser shock peening (LSP) is a process capable of introducing compressive residual stresses into a metallic component. The residual compressive stress field can extend deeper…

Abstract

Purpose

Laser shock peening (LSP) is a process capable of introducing compressive residual stresses into a metallic component. The residual compressive stress field can extend deeper below the treated surface than that produced by conventional shot peening (SP). The effect of such deep compressive stress profile is expected to result in a significantly greater benefit in fatigue resistance after LSP compared to SP. The purpose of this paper is to examine this further.

Design/methodology/approach

Residual stress profiles have been determined by X‐ray diffraction and incremental centre hole drilling. They have been correlated with the respective LSP process parameters and the obtained fatigue behavior.

Findings

A significant improvement of the fatigue life was found for an R ratio of 0.1. SP leads to a fatigue improvement of about 15 percent. For the same specimen geometry, a fatigue life improvement of about 25‐35 percent, depending on the load level, can be obtained after LSP. However, not only for the positive R ratio, where it is quite obvious, but also for the negative R ratios, R=−1 and −3, an increase of the fatigue life is generated by SP and LSP.

Originality/value

A shown LSP has a high potential for extending the service life of metallic components at the design stage, but it may also be possible to apply this technique to in‐service aircraft to extend the service goals of existing structures.

Details

International Journal of Structural Integrity, vol. 2 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 26 May 2022

Mohammad Qasim Shaikh, Thomas A. Berfield and Sundar V. Atre

The purpose of this paper is to investigate a simulation solution for estimating the residual stresses developed in metal fused filament fabrication (MF3) printed parts…

Abstract

Purpose

The purpose of this paper is to investigate a simulation solution for estimating the residual stresses developed in metal fused filament fabrication (MF3) printed parts. Additionally, to verify these estimates, a coupled experimental–computational approach using the crack-compliance method was investigated in this study.

Design/methodology/approach

In this study, a previously validated thermomechanical process simulation was used to estimate the residual stresses developed in the MF3 printing process. Metal-filled polymer filament with a solids loading of 59 Vol.% Ti-6Al-4V was studied. For experimental validation of simulation predictions, the MF3 printed green parts were slitted incrementally and the corresponding strains were measured locally using strain gauges. The developed strain was modeled in finite-element-based structural simulations to estimate a compliance matrix that was combined with strain gauge measurements to calculate the residual stresses. Finally, the simulation results were compared with the experimental findings.

Findings

The simulation predictions were corroborated by the experimental results. Both results showed the same distribution pattern, that is, tensile stresses at the outer zone and compressive stresses in the interior. In the experiments, the residual stresses varied between 1.02 MPa (tension) and −2.28 MPa (compression), whereas the simulations were predicted between 1.37 MPa (tension) and −1.39 MPa (compression). Overall, there was a good quantitative agreement between the process simulation predictions and the experimental measurements, although there were some discrepancies. It was concluded that the thermomechanical process simulation was able to predict the residual stresses developed in MF3 printed parts. This validation enables the printing process simulation to be used for optimizing the part design and printing parameters to minimize the residual stresses.

Originality/value

The applicability of thermomechanical process simulation to predict residual stresses in MF3 printing is demonstrated. Additionally, a coupled experimental–computational approach using the crack-compliance method was used to experimentally determine residual stresses in the three-dimensional printed part to validate the simulation predictions. Moreover, this paper presents a methodology that can be used to predict and measure residual stresses in other additive manufacturing processes, in general, though MF3 was used as demonstrator in this work.

1 – 10 of over 52000