Search results

1 – 10 of 95
Article
Publication date: 22 April 2024

Sixian Rao, Changwei Zhang, Fei Zhao, Lei Bao and Xiaoyi Wang

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Abstract

Purpose

This paper aims to explore the influence of corrosion-deformation interactions (CDI) on the corrosion behavior and mechanisms of 316LN under applied tensile stresses.

Design/methodology/approach

Corrosion of metals would be aggravated by CDI under applied stress. Notably, the presence of nitrogen in 316LN austenitic stainless steel (SS) would enhance the corrosion resistance compared to the nitrogen-absent 316L SS. To clarify the CDI behaviors, electrochemical corrosion experiments were performed on 316LN specimens under different applied stress levels. Complementary analyses, including three-dimensional morphological examinations by KH-7700 digital microscope and scanning electron microscopy coupled with energy dispersive spectroscopy, were conducted to investigate the macroscopic and microscopic corrosion morphology and to characterize the composition of corrosion products within pits. Furthermore, ion chromatography was used to analyze the solution composition variations after immersion corrosion tests of 316LN in a 6 wt.% FeCl3 solution compared to original FeCl3 solution. Electrochemical experiment results revealed the linear decrease in free corrosion potential with increasing applied stress. Electrochemical impedance spectroscopy results indicated that high tensile stress level damaged the integrity of passivation film, as evidenced by the remarkable reduction in electrochemical impedance. Ion chromatography analyses proved the concentrations increase of NO3 and NH4+ ion concentrations in the corrosion media after corrosion tests.

Findings

The enhanced corrosion resistance of 316LN SS is attributable to the presence of nitrogen.

Research limitations/implications

The scope of this study is confined to the influence of tensile stress on the electrochemical corrosion of 316LN at ambient temperatures; it does not encompass the potential effects of elevated temperatures or compressive stress.

Practical implications

The resistance to stress electrochemical corrosion in SS may be enhanced through nitrogen alloying.

Originality/value

This paper presents a systematic investigation into the stress electrochemical corrosion of 316LN, marking the inaugural study of its impact on corrosion behaviors and underlying mechanisms.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 April 2024

Yang Liu, Xiang Huang, Shuanggao Li and Wenmin Chu

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head…

Abstract

Purpose

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head connected with aircraft component. This study aims to propose a ball head adaptive positioning method based on impedance control.

Design/methodology/approach

First, a target impedance model for ball head positioning is constructed, and a reference positioning trajectory is generated online based on the contact force between the ball head and the ball socket. Second, the target impedance parameters were optimized based on the artificial fish swarm algorithm. Third, to improve the robustness of the impedance controller in unknown environments, a controller is designed based on model reference adaptive control (MRAC) theory and an adaptive impedance control model is built in the Simulink environment. Finally, a series of ball head positioning experiments are carried out.

Findings

During the positioning of the ball head, the contact force between the ball head and the ball socket is maintained at a low level. After the positioning, the horizontal contact force between the ball head and the socket is less than 2 N. When the position of the contact environment has the same change during ball head positioning, the contact force between the ball head and the ball socket under standard impedance control will increase to 44 N, while the contact force of the ball head and the ball socket under adaptive impedance control will only increase to 19 N.

Originality/value

In this paper, impedance control is used to decouple the force-position relationship of the ball head during positioning, which makes the entire process of ball head positioning complete under low stress conditions. At the same time, by constructing an adaptive impedance controller based on MRAC, the robustness of the positioning system under changes in the contact environment position is greatly improved.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 24 November 2023

Hailong Du, Zengyao Chen, Xiyan Wang, Yongliang Li, Renshu Yang, Zhiyong Liu, Aibing Jin and Xiaogang Li

The purpose of this paper is to develop new types of anchor bolt materials by adding corrosion-resistant elements for alloying and microstructure regulation.

Abstract

Purpose

The purpose of this paper is to develop new types of anchor bolt materials by adding corrosion-resistant elements for alloying and microstructure regulation.

Design/methodology/approach

Three new anchor bolt materials were designed around the 1Ni system. The stress corrosion cracking resistance of the new materials was characterized by microstructure observation, electrochemical testing and slow strain rate tensile testing.

Findings

The strength of the new anchor bolt materials has been improved, and the stress corrosion sensitivity has been reduced. The addition of Nb makes the material exhibit excellent stress corrosion resistance under –1,200 mV conditions, but the expected results were not achieved when Nb and Sb were coupled.

Originality/value

The new anchor bolt materials designed around 1Ni have excellent stress corrosion resistance, which is the development direction of future materials. Nb allows the material to retain its ability to extend in hydrogen-evolution environments.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 January 2024

Bhupendra Kumar Sharma, Umesh Khanduri, Rishu Gandhi and Taseer Muhammad

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow…

Abstract

Purpose

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow and aneurysm conditions. The findings of this study offer significant insights into the intricate interplay encompassing electro-osmosis, MHD flow, microorganisms, Joule heating and the ternary hybrid nanofluid.

Design/methodology/approach

The governing equations are first non-dimensionalised, and subsequently, a coordinate transformation is used to regularise the irregular boundaries. The discretisation of the governing equations is accomplished by using the Crank–Nicolson scheme. Furthermore, the tri-diagonal matrix algorithm is applied to solve the resulting matrix arising from the discretisation.

Findings

The investigation reveals that the velocity profile experiences enhancement with an increase in the Debye–Hückel parameter, whereas the magnetic field parameter exhibits the opposite effect, reducing the velocity profile. A comparative study demonstrates the velocity distribution in Au-CuO hybrid nanofluid and Au-CuO-GO ternary hybrid nanofluid. The results indicate a notable enhancement in velocity for the ternary hybrid nanofluid compared to the hybrid nanofluids. Moreover, an increase in the Brinkmann number results in an augmentation in entropy generation.

Originality/value

This study investigates the flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, MHD flow and aneurysm conditions. The governing equations are non-dimensionalised, and a coordinate transformation is applied to regularise the irregular boundaries. The Crank–Nicolson scheme is used to model blood flow in the presence of a ternary hybrid nanofluid (Au-CuO-GO/blood) within the arterial domain. The findings shed light on the complex interactions involving stenosis, MHD flow, aneurysms, Joule heating and the ternary hybrid nanofluid. The results indicate a decrease in the wall shear stress (WSS) profile with increasing stenosis size. The MHD effects are observed to influence the velocity distribution, as the velocity profile exhibits a declining nature with an increase in the Hartmann number. In addition, entropy generation increases with an enhancement in the Brinkmann number. This research contributes to understanding fluid dynamics and heat transfer mechanisms in bifurcated arteries, providing valuable insights for diagnosing and treating cardiovascular diseases.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 6 December 2023

Hairui Jiang, Jianjun Guan, Yan Zhao, Yanhong Yang and Jinglong Qu

The purpose of this study is to investigate the corrosion resistance of superalloys subjected to ultrasonic impact treatment (UIT). The passive film growth on the superalloys’…

Abstract

Purpose

The purpose of this study is to investigate the corrosion resistance of superalloys subjected to ultrasonic impact treatment (UIT). The passive film growth on the superalloys’ surface is analyzed to illustrate the corrosion mechanism.

Design/methodology/approach

Electrochemical tests were used to investigated the corrosion resistance of GH4738 superalloys with different UIT densities. The microstructure was compared before and after the corrosion tests. The passive film characterization was described by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) tests.

Findings

The compressive residual stress and corrosion resistance of the specimens significantly increased after UIT. The order of corrosion resistance is related to the UIT densities, i.e. 1.96 s/mm2 > 1.71 s/mm2 > 0.98 s/mm2 > as-cast. The predominant constituents of the passive films are TiO2, Cr2O3, MoO3 and NiO. The passive film on the specimen with 1.96 s/mm2 UIT density has the highest volume fraction of Cr2O3 and MoO3, which is the main reason for its superior corrosion resistance.

Originality/value

This study provides quantitative corrosion data for GH4738 superalloys treated by ultrasonic impact. The corrosion mechanism is explained by the passive film’s characterization.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 June 2023

Yesen Zhu, Cheng-Qing Gu, Jinliang Wang, Xiaohui Xi and Zhenbo Qin

The purpose of this paper is to study the effect of chromium content on the microstructure and corrosion resistance of Ni-Cr coating.

Abstract

Purpose

The purpose of this paper is to study the effect of chromium content on the microstructure and corrosion resistance of Ni-Cr coating.

Design/methodology/approach

Ni-Cr coating was prepared by pulse current electrodeposition with trivalent chromium. On the basis of studying effect of electroplating parameters on composition and morphology, Ni-Cr alloy coatings with various chromium contents were obtained. The microstructure was characterized by scanning electron microscopy, X-ray diffractometer and transmission electron microscopy. Corrosion behavior was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques.

Findings

Electrodeposited chromium was solidly dissolved in nickel and refined the grain of the coating. With the increase of Cr content, the corrosion resistance of Ni-Cr coating was enhanced, which is due to the formation of continuous nickel hydroxide and compact chromium oxide passive films.

Originality/value

Ni-Cr alloy coating without penetration crack was prepared in trivalent chromium electrolyte, and the mechanism of its excellent corrosion resistance was proposed.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 July 2023

Anagi Balachandra, Roz-Ud-Din Nassar and Parviz Soroushian

This study aims to report the development and experimental evaluation of three innovative corrosion-resistant modified epoxy coatings, namely, nanocomposite/toughened…

Abstract

Purpose

This study aims to report the development and experimental evaluation of three innovative corrosion-resistant modified epoxy coatings, namely, nanocomposite/toughened, self-healing and hybrid epoxy coatings, for application on steel substrates.

Design/methodology/approach

The corrosion resistance of these coatings was evaluated in a highly corrosive environment of salt fog spray for 2,500 h of exposure. Electrochemical impedance spectroscopy (EIS) measurements in sustained exposure to NaCl in a saturated Ca(OH)2 solution, rust creepage measurements at the location of scribe formed in the coatings and adhesion strength test were used to assess the performance of the innovative coatings. Commercially available marine-grade protective epoxy coatings were used as the reference coatings.

Findings

The test results showed that the modified epoxy coatings exhibited excellent corrosion resistance when exposed to an aggressive environment for extended periods. The EIS measurements, rust creepage measurements, pull-off strength and visual appearance of the aged modified–epoxy–coated specimens confirmed the enhanced corrosion resistance of the modified epoxy coatings.

Originality/value

Among the three types of modified coatings, the hybrid epoxy coating stands out to be the best performer.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 28 October 2022

Yaser Khajebishak, Sadra Madani, Amir Hossein Faghfouri, Ali Soleimani, Sara Ilaei, Said Peyrovi and Laleh Payahoo

Meteorin like-peptide (Metrnl) modulates energy hemostasis and relieves inflammation and oxidative stress. This study aims to investigate the relationship between Metrnl levels…

Abstract

Purpose

Meteorin like-peptide (Metrnl) modulates energy hemostasis and relieves inflammation and oxidative stress. This study aims to investigate the relationship between Metrnl levels and inflammatory cytokines, oxidative stress biomarkers and body composition parameters in obese type 2 diabetic patients.

Design/methodology/approach

This analytical cross-sectional study was carried out between August 2020 and March 2021on 93 people (n = 32 obese type 2 diabetic patients, n = 31 healthy obese, n = 30 healthy normal weight). Serum Metrnl levels were measured by enzyme-linked immunosorbent assay. Serum levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), high-sensitivity C-reactive protein (hs-CRP), malondialdehyde and total antioxidant capacity were measured using standard methods. Body composition was assessed by bioelectrical impedance analysis. p-Value less than 0.05 was considered significant.

Findings

Serum Metrnl levels were lower in obese diabetic patients than in healthy normal-weight subjects (82.5 [72.4–94.5] ng/mL compared to 154 [129–189] ng/mL). The difference in Metrnl levels between the two groups was significant (p < 0.001). The difference in Metrnl levels between the two groups was significant. Moreover, a significant correlation between Metrnl level and both TNF-a and hs-CRP was detected (p = 0.006 and p < 0.001, respectively) and the correlation between Metrnl and IL-6 was borderline (p = 0.051). A negative correlation was revealed between Metrnl level and anthropometric measurements and body composition (p < 0.05) with the exception of fat-free mass and skeletal muscle mass.

Originality/value

To discover sufficient evidence for the therapeutic function of Metrnl and its use as a prognostic biomarker in the management of type 2 diabetes mellitus, future clinical studies are needed to highlight other factors influencing Metrnl serum levels.

Details

Nutrition & Food Science, vol. 53 no. 5
Type: Research Article
ISSN: 0034-6659

Keywords

1 – 10 of 95