Search results

1 – 10 of over 1000
Article
Publication date: 21 January 2022

Christoph Jörgens and Markus Clemens

In high voltage direct current cable systems, cable joints are known as the least reliable components due to the use of multiple dielectrics. Resulting from the electric field and…

Abstract

Purpose

In high voltage direct current cable systems, cable joints are known as the least reliable components due to the use of multiple dielectrics. Resulting from the electric field and temperature depending conductivity of the different dielectrics, field enhancement at critical areas, e.g. triple points, may result in accelerated aging and the failure of the component. To reduce the stress, different field grading techniques are applied. The purpose of this study is to investigate different grading techniques for cable joints. Different shapes of the electrode and a varying nonlinear conductivity of field grading materials (FGM) are used for the simulation of the electric field.

Design/methodology/approach

Coupled electro-thermal field simulations are applied for different joint geometries, to obtain the stationary electric field. Electric field simulations in cable joint using geometric and nonlinear field grading techniques are shown.

Findings

Using the geometric field grading, the shape of the stress cone determines the field values in critical areas (triple points). High stress reduction is obtained for a certain curvature of the stress cone. For the nonlinear stress control, materials with a higher conductivity in comparison to the cable and the joint material are used. A field reduction is obtained by increasing the total conductivity. On the other hand, this is also increasing the insulation losses within the total FGM. More applicable is the decrease of the switching field or the increase of nonlinearity, which is only locally increase the conductivity and the insulation losses. Furthermore, simulations results show that an approximately constant field reduction is obtained, if the nonlinearity is above a certain threshold.

Research limitations/implications

This study is restricted to a field dependency of FGM only. For impulse voltages, high temperature and electric conductivity values my result in a thermal runaway. Furthermore, only direct current field grading techniques are studied.

Originality/value

The field grading of cable joints, using geometric and nonlinear techniques, is analyzed. A comparison between the electric field, by varying the curvature of the ground stress cone or the FGM conductivity constants in a complex joint geometry is novel. With its effect on the electric fields, general requirements for the geometry (geometric field grading) or the values of the FGM constants (nonlinear field grading) are defined to obtain a sufficient field grading.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2015

Nebojsa B. Raicevic and Nikola Raicevic

Underground cables can produce higher electromagnetic fields directly above them than an overhead line. The majority of cable failures on distribution system are caused by defects…

Abstract

Purpose

Underground cables can produce higher electromagnetic fields directly above them than an overhead line. The majority of cable failures on distribution system are caused by defects in the cable accessories. Nowadays, significant research has been carried out worldwide into examining whether electricity, and in particular, the presence of electric and magnetic fields have an adverse impact on health, especially the occurrence of cancer and childhood leukemia. The purpose of this paper is to optimize the electric field distribution in underground cable accessories. This reduces the impact of the harmful effects of the fields on living beings and humans.

Design/methodology/approach

Cable terminations and joints are designed to eliminate the stress concentration at the termination screen to avoid the breakdown of the cable and high values of electric field at these points. Any improvement in the cable termination and joints construction is of great interest. There are several methods for the solution of electric field distribution. These can be summarized as analytical, experimental, free-hand field mapping, analogue methods and numerical methods. In this paper cable accessories are modeled by using multilayer dielectric system and very thin deflector’s cones.

Findings

This model includes specific insulators design and smart choice of electrodes position. Stress-grading nonlinear materials in form of tapes and tubes were used with much success. In order to optimize the cable joint parameters, two criteria were monitored – total electric field magnitude and magnitude of the tangential component. More than 30 percent is reduced impact of cables on the environment.

Originality/value

In order to investigate the accuracy of the applied numerical model, various configurations of the cable accessories are studied. The first time is applied new Hybrid Boundary Elements Method on the protection of the environment.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 August 2017

Long Wu, Kit-Lun Yick, Joanne Yip and Sun-Pui Ng

One of the crucial steps in the molded bra production is the process of developing the mold head. The purpose of this paper is to determine the final cups style and size. Compared…

Abstract

Purpose

One of the crucial steps in the molded bra production is the process of developing the mold head. The purpose of this paper is to determine the final cups style and size. Compared with traditional development process of the mold head, less time-consuming and a more quantitative method is needed for the design and modification of the mold head.

Design/methodology/approach

A three-dimensional (3D) numerical model for the simulation of large compressive deformation was built in this paper to research the foam bra cup molding process. Since the head cones have more representative than the mold heads, the male and female head cones were used in the simulation. All of the solid shapes are modeled by using 3D Solid 164 elements as well as an automatic surface-to-surface contact between head cones.

Findings

Simulation of the foam cup molding process is conducted by inputting different properties of the foam material and stress-strain curves under different molding temperatures.

Research limitations/implications

In order to simulate the laminated foam moulding process, heat transfer through a layered textile assembly can be studied by using the thermo-mechanical coupled FE model.

Practical implications

According to the different foam performance parameters under different temperatures along with different head cone shapes, distribution and variation in the stress field can be obtained as well as the ultimate capacity of foam materials.

Social implications

A computer-aided parametric design system for the mold heads provides an effective solution to improving the development process of mold heads.

Originality/value

The distribution and variation in the stress fields can be analyzed through simulation, providing a reference for the mold head design.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2001

P.E. Dijk, A.M.C. Janse, J.A.M. Kuipers and W.P.M. van Swaaij

The average residence time of liquid flowing over the surface of a rotating cone was determined numerically. The development and propagation of the free surface flow was simulated…

Abstract

The average residence time of liquid flowing over the surface of a rotating cone was determined numerically. The development and propagation of the free surface flow was simulated using the volume of fluid (VOF) method. The numerical simulations were validated using laboratory experiments using soy‐oil as a model liquid, and approximate analytical solutions of the simplified governing equations. The numerical simulations revealed the importance of the cone rotation frequencies and the minor influence of the cone angles on the residence times. Higher liquid throughputs produced smaller residence times. As expected, an increasing cone size results in proportionally higher residence times. Furthermore, it was established that even for small cones with a characteristic diameter of, e.g. less than 1m, relatively high (∼1 kg/s) throughputs of liquid are possible. It appears that the combination of the decreasing layer thickness and the increasing size of the numerical grid cells with increasing radial cone coordinate hampers the numerical simulation of this system.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 11 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 June 2022

Igor V. Shevchuk

Thus, the purposes of this study are to study the limits of applicability of the self-similar solution to the problem of fluid flow, heat and mass transfer in conical gaps with…

Abstract

Purpose

Thus, the purposes of this study are to study the limits of applicability of the self-similar solution to the problem of fluid flow, heat and mass transfer in conical gaps with small conicity angles, to substantiate the impossibility of using a self-similar formulation of the problem in the case of large conicity angles and to substantiate the absence of the need to take into account the radial thermal conductivity in the energy equation in its self-similar formulation for the conicity angles up to 4°.

Design/methodology/approach

In the present work, an in-depth and extended analysis of the features of fluid flow and heat transfer in a conical gap at small angles of conicity up to 4° is performed. The Couette-type flow arising, in this case, was modeled using a self-similar formulation of the problem. A detailed analysis of fluid flow calculations using a self-similar system of equations showed that they provide the best agreement with experiments than other known approaches. It is confirmed that the self-similar system of flow and heat transfer equations is applicable only to small angles of conicity up to 4°, whereas, at large angles of conicity, this approach becomes unreasonable and leads to significantly inaccurate results. The heat transfer process in a conical gap with small angles of conicity can be modeled using the self-similar energy equation in the boundary layer approximation. It was shown that taking into account the radial thermal conductivity in the self-similar energy equation at small conicity angles up to 4° leads to maximum deviations of the Nusselt number up to 1.5% compared with the energy equation in the boundary layer approximation without taking into account the radial thermal conductivity.

Findings

It is confirmed that the self-similar system of fluid flow equations is applicable only for small conicity angles up to 4°. The inclusion of radial thermal conductivity in the model unnecessarily complicates the mathematical formulation of the problem and at small conicity angles up to 4° leads to insignificant deviations of the Nusselt number (maximum 1.5%). Heat transfer in a conical gap with small conicity angles up to 4° can be modeled using the self-similar energy equation in the boundary layer approximation.

Originality/value

This paper investigates the question of the validity of taking into account the radial heat conduction in the energy equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2018

Maghsood Daliri and Nader Javani

The purpose of this paper is to investigate squeezing motion between conical plates lubricated by ferro-fluid couple stress lubricants considering convective fluid inertia effects.

Abstract

Purpose

The purpose of this paper is to investigate squeezing motion between conical plates lubricated by ferro-fluid couple stress lubricants considering convective fluid inertia effects.

Design/methodology/approach

Based upon the Stokes couple stress theory, Ferro-hydrodynamic model of Shliomis and averaged inertia principle, squeeze film characteristics between conical plates are obtained.

Findings

According to the results, it is found that couple stress ferro-fluid lubricants increase squeeze film characteristics. Moreover, with increasing convective fluid inertia parameter, the squeeze film characteristics are increased. In contrast, the dimensionless load-carrying capacity diminishes when half cone angle of conical plate increases.

Originality/value

This paper is relatively original and it describes the squeeze film characteristics between conical plates with ferro-fluid, convective inertia, couple stresses and half cone angle of conical plate effects.

Details

Industrial Lubrication and Tribology, vol. 70 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2002

H. Matallah, P. Townsend and M.F. Webster

This study considers both a single and multi‐mode viscoelastic analysis for wire‐coating flows. The numerical simulations utilise a finite element time‐stepping technique, a…

Abstract

This study considers both a single and multi‐mode viscoelastic analysis for wire‐coating flows. The numerical simulations utilise a finite element time‐stepping technique, a Taylor‐Petrov‐Galerkin/pressure‐correction scheme employing both coupled and decoupled procedures between stress and kinematic fields. An exponential Phan‐Thein/Tanner model is used to predict pressure‐drop and residual stress for this process. Rheometrical data fitting is performed for steady shear and pure extensional flows, considering both high and low density polyethylene melts. Simulations are conducted to match experimental pressure‐drop/flowrate data for a contraction flow. Then, for a complex industrial wire‐coating flow, stress and pressure drop are predicted numerically and quantified. The benefits are extolled of the use of a multi‐mode model that can incorporate a wide‐range discrete relaxation spectrum to represent flow response in complex settings. Contrast is made between LDPE and HDPE polymers, and dependency on individual relaxation modes is identified in its contribution to overall flow behaviour.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2023

Xin Meng, Qingyang Ren, Songqiang Xiao, Bin Chen and Hongfei Li

The purpose of this paper is to simulate the tension process of tension-type anchor cable and to explore the mechanical characteristics and tension-torsion coupling effect of…

Abstract

Purpose

The purpose of this paper is to simulate the tension process of tension-type anchor cable and to explore the mechanical characteristics and tension-torsion coupling effect of anchor cable subjected to tension.

Design/methodology/approach

ABAQUS numerical software is applied to construct the numerical models of tension-type anchor cables with different diameters. Through explicit contact, the characteristics of contact between grouting body-anchor cable and grouting body-rock mass are determined. Confining pressure is applied to the model through surface pressure, and drawing force is applied to the model by displacement loading so as to simulate the tension process of the anchor cable.

Findings

The results show that the stress is transmitted in both axial and radial directions in the anchorage section and distributed in a cone. The shear stress in the grouting body is unevenly distributed, and its peak value increases with the rise in confining pressure and anchor cable diameter. The stress characteristics of torque and axial force are basically consistent and evenly distributed in the free section; they gradually decrease in the anchorage section. Due to the tension-torsion coupling effect, the internal stress characteristics of the anchor cable structure vary. On average, the anchorage performance of each anchor cable model is improved by 6.19%.

Originality/value

The proposed method of numerical modelling is effective in addressing the interface contact between the anchor cable and the grouting body and in solving the problem with convergence of calculation. Compared with the indoor test, this method is more suited to collecting the internal mechanical data of the anchor body.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 November 2020

Torben Hansen and Thyra Uth Thomsen

This study aims to investigate relationships among body mass index (BMI), socioeconomic variables, dietary self-efficacy and consumer dietary stress in healthy food buying and…

Abstract

Purpose

This study aims to investigate relationships among body mass index (BMI), socioeconomic variables, dietary self-efficacy and consumer dietary stress in healthy food buying and explore whether different levels of personal values influence these relationships.

Design/methodology/approach

The study is based on an online representative cross-sectional study with 380 food consumers. Structural equation modeling served to estimate direct, mediating and moderating effects between the studied constructs and variables.

Findings

Examples of moderating and moderated mediating effects include a negative impact of BMI on dietary stress for consumers with low levels of enjoyment value but no significant effect for consumers with high levels of enjoyment. BMI also had a greater negative impact on dietary self-efficacy when the level of respect/achievement was high (vs low), and respect/achievement positively moderated the mediating effect of BMI on dietary stress through dietary self-efficacy.

Research limitations/implications

This study focuses on analyzing healthy food buying in a particular cultural setting and may suffer from a lack of generalizability to other cultures. The results suggest that research should take into account personal values when investigating stress.

Practical implications

Food managers and health authorities can improve their ability to reduce dietary stress when addressing consumers by understanding the role of personal values in healthy food choice and the impact on mental well-being.

Originality/value

This study offers a novel, more fine-grained conceptual model of how consumers develop dietary stress when buying healthy food.

Details

European Journal of Marketing, vol. 55 no. 3
Type: Research Article
ISSN: 0309-0566

Keywords

Article
Publication date: 1 April 1955

E.H. Mansfield and P.W. Kleeman

This report presents a simplified large‐deflexion theory for thin flat plates subjected to normal loading. The theory is applicable to plates in which the loading is resisted…

Abstract

This report presents a simplified large‐deflexion theory for thin flat plates subjected to normal loading. The theory is applicable to plates in which the loading is resisted primarily by the flexural rigidity of the plate. The middle surface of the plate is assumed to be inextensional so that the mode of deformation is a developable surface. There is good agreement with experiment.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 4
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 1000