Search results

1 – 10 of 660
Open Access
Article
Publication date: 24 November 2022

Zhou Shi, Jiachang Gu, Yongcong Zhou and Ying Zhang

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder…

Abstract

Purpose

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Design/methodology/approach

Based on the investigation and analysis of the development history, structure form, structural parameters, stress characteristics, shear connector stress state, force transmission mechanism, and fatigue performance, aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge, the development trend, research status, research results and existing problems are expounded.

Findings

The shear-compression composite joint has become the main form in practice, featuring shortened length and simplified structure. The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder. The reasonable thickness of the bearing plate is 40–70 mm. The calculation theory and simplified calculation formula of the overall bearing capacity, the nonuniformity and distribution laws of the shear connector, the force transferring ratio of steel and concrete components, the fatigue failure mechanism and structural parameters effects are the focus of the research study.

Originality/value

This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 8 January 2020

Guillermo A. Riveros, Felipe J. Acosta, Reena R. Patel and Wayne Hodo

The rostrum of a paddlefish provides hydrodynamic stability during feeding process in addition to detect the food using receptors that are randomly distributed in the rostrum. The…

1048

Abstract

Purpose

The rostrum of a paddlefish provides hydrodynamic stability during feeding process in addition to detect the food using receptors that are randomly distributed in the rostrum. The exterior tissue of the rostrum covers the cartilage that surrounds the bones forming interlocking star shaped bones.

Design/methodology/approach

The aim of this work is to assess the mechanical behavior of four finite element models varying the type of formulation as follows: linear-reduced integration, linear-full integration, quadratic-reduced integration and quadratic-full integration. The paper also presents the load transfer mechanisms of the bone structure of the rostrum. The base material used in the study was steel with elastic–plastic behavior as a homogeneous material before applying materials properties that represents the behavior of bones, cartilages and tissues.

Findings

Conclusions are based on comparison among the four models. There is no significant difference between integration orders for similar type of elements. Quadratic-reduced integration formulation resulted in lower structural stiffness compared with linear formulation as seen by higher displacements and stresses than using linearly formulated elements. It is concluded that second-order elements with reduced integration are the alternative to analyze biological structures as they can better adapt to the complex natural contours and can model accurately stress concentrations and distributions without over stiffening their general response.

Originality/value

The use of advanced computational mechanics techniques to analyze the complex geometry and components of the paddlefish rostrum provides a viable avenue to gain fundamental understanding of the proper finite element formulation needed to successfully obtain the system behavior and hot spot locations.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 28 February 2023

Boshra Ahmed Halo, Rashid Al-Yahyai, Abdullah Al-Sadi and Asma Al-Sibani

Crops are increasingly affected by drought; hence, the current study explored the potential role of three desert endophytic fungi, Aspergillus fumigatus, Aspergillus terreus and…

Abstract

Purpose

Crops are increasingly affected by drought; hence, the current study explored the potential role of three desert endophytic fungi, Aspergillus fumigatus, Aspergillus terreus and Talaromyces variabilis, in conferring drought tolerance in tomato plants.

Design/methodology/approach

Preserved endophytic fungi from a Rhazya stricta desert plant were adopted to obtain the required fungal treatment; tomatoes received fungal treatments directly in plastic trays and subsequently in pots. Drought was applied using 15% of PEG-6000 at two stages: flowering and fruiting. The following parameters were measured: pollen sterility, growth characteristics, morphological analysis and biochemical analysis, including proline, gibberellic acid (GA3) and chlorophyll measurements; thus, the data were analyzed statistically using SPSS software.

Findings

All applied endophytes significantly promoted pollen viability and tomato yield under stressed and nonstressed conditions. Interestingly, these endophytes significantly enhanced the number of trichomes under drought stress and promoted tomato fruit quality. The colonized tomato plants accumulated a high proline level under drought stress but lower than un-inoculated stressed plants. Also, a significant rise in growth characteristics was observed by A. fumigatus and A. terreus under normal conditions. Moreover, both raised GA3 levels under drought-stressed and nonstressed conditions. Also these two endophytes enhanced chlorophyll and carotenoid contents under drought stress. Fruit characteristics were enhanced by nonstressed T. variabilis and stressed A. fumigatus.

Originality/value

The present endophytic fungi provide impressive benefits to their host in normal and drought-stressed conditions. Consequently, they represent valuable sources as sustainable and environmentally friendly alternatives to mitigate drought stress.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 4
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 8 March 2022

Andrea Spaggiari and Filippo Favali

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the…

Abstract

Purpose

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the maximum dimension of the 3D printed parts, which is typically limited, by joining the parts with structural adhesive, without losing strength and stiffness and keeping the major asset of polymeric 3 D printing: freedom of shape of the system and low cost of parts.

Design/methodology/approach

The materials used in the paper are the following. The adhesive considered is a commercial inexpensive acrylic, quite similar to superglue, applicable with almost no surface preparation and fast curing, as time constraint is one of the key problems that affects industrial adhesive applications. The 3D printed parts were in acrylonitrile butadiene styrene (ABS), obtained with a Fortus 250mc FDM machine, from Stratasys. The work first compares flat overlap joint with joints designed to permit mechanical interlocking of the adherends and then to a monolithic component with the same geometry. Single lap, joggle lap and double lap joints are the configurations experimentally characterized following a design of experiment approach.

Findings

The results show a failure in the substrate, due to the low strength of the polymeric adherends for the first batch of typical bonded configurations, single lap, joggle lap and double lap. The central bonded area, with an increased global thickness, never does fail, and the adhesive is able to transfer the load both with and without mechanical interlocking. An additional set of scarf joints was also tested to promote adhesive failure as well as to retrieve the adhesive strength in this application. The results shows that bonding of polymeric AM parts is able to express its full potential compared with a monolithic solution even though the joint fails prematurely in the adherend due to the bending stresses and the notches present in the lap joints.

Research limitations/implications

Because of the 3D printed polymeric material adopted, the results may be generalized only when the elastic properties of the adherends and of the adhesive are similar, so it is not possible to extend the findings of the work to metallic additive manufactured components.

Practical implications

The paper shows that the adhesives are feasible way to expand the potentiality of 3 D printed equipment to obtain larger parts with equivalent mechanical properties. The paper also shows that the scarf joint, which fails in the adhesive first, can be used to extract information about the adhesive strength, useful for the designers which have to combine adhesive and additive manufactured polymeric parts.

Originality/value

To the best of the researchers’ knowledge, there are scarce quantitative information in technical literature about the performance of additive manufactured parts in combination with structural adhesives and this work provides an insight on this interesting subject. This manuscript provides a feasible way of using rapid prototyping techniques in combination with adhesive bonding to fully exploit the additive manufacturing capability and to create large and cost-effective 3 D printed parts.

Details

Rapid Prototyping Journal, vol. 28 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 30 March 2023

Guilherme Duarte, Ana M.A. Neves and António Ramos Silva

The goal of this work is to create a computational finite element model to perform thermoelastic stress analysis (TSA) with the usage of a non-ideal load frequency, containing the…

Abstract

Purpose

The goal of this work is to create a computational finite element model to perform thermoelastic stress analysis (TSA) with the usage of a non-ideal load frequency, containing the effects of the material thermal properties.

Design/methodology/approach

Throughout this document, the methodology of the model is presented first, followed by the procedure and results. The last part is reserved to results, discussion and conclusions.

Findings

This work had the main goal to create a model to perform TSA with the usage of non-ideal loading frequencies, considering the materials’ thermal properties. Loading frequencies out of the ideal range were applied and the model showed capable of good results. The created model reproduced acceptably the TSA, with the desired conditions.

Originality/value

This work creates a model to perform TSA with the usage of non-ideal loading frequencies, considering the materials’ thermal properties.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 12 October 2022

Madhavan Maya, V.M. Anjana and G.K. Mini

The study explores the perspectives of college students on the pedagogical shift as well as frequent transitions between online and offline learning modes during the COVID-19…

3752

Abstract

Purpose

The study explores the perspectives of college students on the pedagogical shift as well as frequent transitions between online and offline learning modes during the COVID-19 pandemic in Kerala, the most literate state in India.

Design/methodology/approach

A descriptive cross-sectional study was conducted among 1,366 college students in Kerala during December 2021. A pre-tested questionnaire was sent using Google Forms to students of arts and science colleges. The authors analyzed quantitative data using descriptive statistics and qualitative data using thematic content analysis.

Findings

The reported advantages of online learning were increased technical skill, flexibility in study time, effectiveness in bridging the gap of the missed academic period and provision of attending more educational webinars. Students expressed concerns of increased workload, difficulty in concentration due to family circumstances, academic incompetency, uncleared doubts and addiction to mobile phones and social media during the online classes. The main advantages reported for switching to an offline learning mode were enhanced social interaction, effective learning, better concentration and reduced stress. The reported challenges of offline classes were fear of getting the disease, concern of maintaining social distancing and difficulty in wearing masks during the classes. The shift in offline to online learning and vice versa was perceived as a difficult process for the students as it took a considerable time for them to adjust to the switching process of learning.

Originality/value

Students' concerns regarding transition between different learning modes provide important information to educators to better understand and support the needs of students during the pandemic situations.

Details

Asian Association of Open Universities Journal, vol. 17 no. 3
Type: Research Article
ISSN: 1858-3431

Keywords

Open Access
Article
Publication date: 24 January 2020

Mingyu Zhang, Jing Wang, Peiran Yang, Zhaohua Shang, Yi Liu and Longjie Dai

This paper aims to study the influence of the dimension change of bush-pin on the pressure, oil film thickness, temperature rise and traction coefficient in contact zone by using…

Abstract

Purpose

This paper aims to study the influence of the dimension change of bush-pin on the pressure, oil film thickness, temperature rise and traction coefficient in contact zone by using a thermal elastohydrodynamic lubrication (EHL) model for finite line contact. Concretely, the effects of the equivalent curvature radius of the bush and the pin, and the length of the bush are investigated.

Design/methodology/approach

In this paper, the contact between the bush and pin is simplified as finite line contact. The lubrication state is studied by numerical simulation using steady-state line contact thermal EHL. A constitutive equation Ree–Eyring fluid is used in the calculations.

Findings

It is found that by selecting an optimal equivalent radius of curvature and prolonging the bush length can improve the lubrication state effectively.

Originality/value

Under specific working conditions, there exists an optimal equivalent radius to maximize the minimum oil film thickness in the contact zone. The increase of generatrix length will weaken the stress concentration effect in the rounded corner area at both ends of the bush, which can improve the wear resistance of chain.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0448.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 9 December 2020

Paula M. Di Nota, Bryce E. Stoliker, Adam D. Vaughan, Judith P. Andersen and Gregory S. Anderson

The purpose of this study isto synthesize recent empirical research investigating memory of stressful critical incidents (both simulated and occurring in the field) among law…

4668

Abstract

Purpose

The purpose of this study isto synthesize recent empirical research investigating memory of stressful critical incidents (both simulated and occurring in the field) among law enforcement officers.

Design/methodology/approach

The study used the approach of systematic state-of-the-art review.

Findings

In total, 20 studies of police and military officers show reduced detail and accuracy of high- versus low-stress incidents, especially for peripheral versus target information. Decrements in memory performance were mediated by the extent of physiological stress responses. Delayed recall accuracy was improved among officers that engaged in immediate post-incident rehearsal, including independent debriefing or reviewing body-worn camera footage.

Research limitations/implications

Most studies were not found through systematic database searches, highlighting a need for broader indexing and/or open access publishing to make research more accessible.

Practical implications

By understanding how stress physiology enhances or interferes with memory encoding, consolidation and recall, evidence-based practices surrounding post-incident evidence gathering are recommended.

Social implications

The current review addresses common public misconceptions of enhanced cognitive performance among police relative to the average citizen.

Originality/value

The current work draws from scientific knowledge about the pervasive influence of stress physiology on memory to inform existing practices surrounding post-incident evidence gathering among police.

Details

Policing: An International Journal, vol. 44 no. 1
Type: Research Article
ISSN: 1363-951X

Keywords

1 – 10 of 660