Search results

1 – 10 of over 78000
Article
Publication date: 25 October 2021

Chunwei Li, Quansheng Sun and Yancheng Liu

As the service time of bridges increases, the degradation of bending capacity, the lack of safety reserves and the decrease in bridge reliability are common in early built…

Abstract

Purpose

As the service time of bridges increases, the degradation of bending capacity, the lack of safety reserves and the decrease in bridge reliability are common in early built bridges. Due to the defective lateral hinge joints, hollow slab bridges are prone to cracking of hinge joint between plates, transverse connection failure and stress of single plates under the action of long-term overload and repeated load. These phenomena seriously affect the bending capacity of the hollow slab bridge. This paper aims to describe a new method of simply supported hollow slab bridge reinforcement called polyurethane–cement (PUC) composite flexural reinforcement.

Design/methodology/approach

This paper first studies the preparation and tensile and compressive properties of PUC composite materials. Then, relying on the actual bridge strengthening project, the 5 × 20 m prestressed concrete simply supported hollow slab was reinforced with PUC composites with a thickness of 3 cm within 18 m of the beam bottom. Finally, the load test was used to compare the performance of the bridge before and after the strengthening.

Findings

Results showed that PUC has high compressive and tensile strengths of 72 and 46 MPa. The static test revealed that the measured values and verification coefficients of the measured points were reduced compared with those before strengthening, the deflection and strain were reduced by more than 15%, the measured section stiffness was improved by approximately 20%. After the strengthening, the lateral connection of the bridge, the strength and rigidity of the structure and the structural integrity and safety reserves were all significantly improved. The application of PUC to the flexural strengthening of the bridge structure has a significant effect.

Originality/value

As a new type of material, PUC composite is light, remarkable and has good performance. When used in the bending strengthening of bridge structures, this material can improve the strength, rigidity, safety reserve and bending capacity of bridges, thus demonstrating its good engineering application prospect.

Details

International Journal of Structural Integrity, vol. 13 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 30 August 2019

Wojciech Piotr Adamczyk, Marcin Gorski, Ziemowit Ostrowski, Ryszard Bialecki, Grzegorz Kruczek, Grzegorz Przybyła, Rafal Krzywon and Rafal Bialozor

Large structural objects, primarily concrete bridges, can be reinforced by gluing to their stretched surface tapes of fiber-reinforced polymer (FRP). The condition for this…

151

Abstract

Purpose

Large structural objects, primarily concrete bridges, can be reinforced by gluing to their stretched surface tapes of fiber-reinforced polymer (FRP). The condition for this technology to work requires the quality of the bonding of FRP and the concrete to be perfect. Possible defects may arise in the phase of construction but also as a result of long-term fatigue loads. These defects having different forms of voids and discontinuities in the bonding layer are difficult to detect by optical inspection. This paper aims to describe the development of a rapid and nondestructive method for quantitative assessment of the debonding between materials.

Design/methodology/approach

The applied technique belongs to the wide class of active infrared (IR) thermography, the principle of which is to heat (or cool) the investigated object, and determine the properties of interest from the recorded, by an IR camera, temperature field. The methodology implemented in this work is to uniformly heat for a few seconds, using a set of halogen lamps, the FRP surface attached to the concrete. The parameter of interest is the thermal resistance of the layer separating the polymer tape and the concrete. The presence of voids and debonding will result in large values of this resistance. Its value is retrieved by solving an inverse transient heat conduction problem. This is accomplished by minimizing, in the sense of least squares, the difference between the recorded and simulated temperatures. The latter is defined as a solution of a 1D transient heat conduction problem with the already mentioned thermal resistance treated as the only decision variable.

Findings

A general method has been developed, which detects debonding of the FRP tapes from the concrete. The method is rapid and nondestructive. Owing to a special selection of the compared dimensionless measured and simulated temperatures, the method is not sensitive to the surface quality (roughness and emissivity). Measurements and calculation may be executed within seconds. The efficiency of the technique has been shown at a sample, where the defects have been artificially introduced in a controlled manner.

Originality/value

A quantitative assessment procedure which can be used to determine the extent of the debonding has been developed. The procedure uses inverse technique whose result is the unknown thermal resistance between the member and the FRP strip.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 2001

R.V. Balendran, T.M. Rana and A. Nadeem

Presents an overview and discusses the applications of fibre reinforced polymer (FRP) sheets and plates in the strengthening of concrete structures. An insight may be obtained…

1890

Abstract

Presents an overview and discusses the applications of fibre reinforced polymer (FRP) sheets and plates in the strengthening of concrete structures. An insight may be obtained from the discussions made to enhance the use of these techniques for productive use. In addition, selected case studies have been furnished where FRP materials have been used for repairing/retrofitting, emphasizing the application of different types of FRP materials in strengthening concrete structures. Concludes that the use of FRP material is rapidly gaining pace and replacing the traditional steel or metal based materials due to its enhanced properties and cost effectiveness.

Details

Structural Survey, vol. 19 no. 4
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 1 April 1987

Edmund Booth

Introduction In a previous paper, I discussed the techniques for ensuring the earthquake resistance of new buildings. Experience of past earthquakes demonstrates that…

Abstract

Introduction In a previous paper, I discussed the techniques for ensuring the earthquake resistance of new buildings. Experience of past earthquakes demonstrates that incorporating the methods and advances of the last 30 years in the planning, design and construction of new buildings is the best way of minimising loss of life and investment during major earthquakes.

Details

Structural Survey, vol. 5 no. 4
Type: Research Article
ISSN: 0263-080X

Article
Publication date: 23 March 2022

Long Liu, Xingpeng Ma, Li Yan and Yongmei Wang

Embedding carbon fiber reinforced plastics (CFRP) bars in the tension zone of reinforced concrete (RC) beams is a widely used reinforcement method, which has the advantages of…

Abstract

Purpose

Embedding carbon fiber reinforced plastics (CFRP) bars in the tension zone of reinforced concrete (RC) beams is a widely used reinforcement method, which has the advantages of strong anti-peel ability and high utilization of tensile materials. To further improve the flexural bearing capacity of RC beams, a new composite reinforcement method using the UHPC layer in the compressive zone of RC beams is proposed based on embedding CFRP bars in the tension zone of RC beams.

Design/methodology/approach

The finite element model of an RC experimental beam with CFRP bars embedded in the tension zone was carried out by ABAQUS. Besides, the reliability of the finite element model results was verified by comparing with the experimental results. On this basis, the flexural reinforcement effect of CFRP bars and UHPC layers on RC beams was analyzed.

Findings

Calculation results show the flexural bearing capacity of the beam strengthened by the new method is 15.9%, which is higher than that of the unreinforced beam, and 10.4% higher than that of the beam strengthened only with CFRP bars. The beam ductility ratio of the new method is 8.25%, which is slightly higher than that of the unreinforced beam and equal to that of the beam reinforced only with CFRP bars embedded in the tension zone. The effectiveness of the new method is further verified by using the analytical calculation method.

Originality/value

A new flexural reinforcement method for reinforced concrete beams is proposed, and the effectiveness of the method was verified by experiments and finite element model. The flexural bearing capacity and ductility of the new method were analyzed based on the load-deflection curve. Finally, the possibility of the new method was verified by analytical analysis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 August 1999

Wu Xuemou and Guo Dinghe

The framework, methodology and development of pansystems cybernetics are introduced. Related contents include: the postmodernizational systems thought, the epitome of pansystems…

Abstract

The framework, methodology and development of pansystems cybernetics are introduced. Related contents include: the postmodernizational systems thought, the epitome of pansystems methods, hi‐tech mechanism, social cybernetics, pansystems views of value, labor, management and economics, pedagogy, history and futurology, systems mathematics, general clustering analysis, observocontrollability, generalized living systems, information metascience, regret information, general fuzzy control, generalized gray systems, entropy, large scale dynamical supercomplicated Shengke systems, function simulations, transformation theory, simplification, strengthening, forming substance of subsystems of living systems of Miller’s theory, etc.

Details

Kybernetes, vol. 28 no. 6/7
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 6 September 2022

Lifeng Wang, Haiqi Wu, Long Liu and Ziwang Xiao

The application of ultra-high performance concrete (UHPC) in anchorage zones can significantly improve the local compression performance of structures. However, the high cost and…

Abstract

Purpose

The application of ultra-high performance concrete (UHPC) in anchorage zones can significantly improve the local compression performance of structures. However, the high cost and complex preparation of UHPC make UHPC difficult to be widely used in practice. This study proposes a method to strengthen the local compression zone of structures built by normal strength concrete (NSC) by incorporating UHPC cores.

Design/methodology/approach

In this study, a Finite Element Model (FEM) of local compression specimens was established by ABAQUS, and the accuracy of FEM was verified by comparing the FEM calculation results with experimental results. The verified FEM was adapted to the research on the influences of affecting factors on local compression performance of structures, including NSC strength, UHPC strength, spiral steel bar strength, and UHPC core diameter.

Findings

The results show that the peak load of the strengthened specimen SC1-U + N increases by 210.2% compared to that of the SC1-NSC. Furthermore, compared to SC1, the strengthened specimen SC1-U + N can save 64.7% amount of UHPC while the peak load decreases by only 34.4%. The peak load of the strengthened specimens increases with the axial compressive strength and the diameter of UHPC cores increasing, crack load increases with increasing the compressive strength of NSC, the spiral steel bar with high strength can prevent the sharp drop of load-deflection curve and the residual bearing capacity increases accordingly. All findings indicate that increasing the diameter of UHPC cores can improve the overall performance of the specimens. Under loading, all specimens fail by following a similar pattern. The effectiveness of this new strengthen method is also verified by FEM analytical calculations.

Originality/value

Based on the experimental study, this study extrapolates the influence of different parameters on the local bearing capacity of the strengthened specimens by finite element simulation. This method not only ensures the accuracy of bearing capacity assessment, but also does not require many samples, which ensures the economy of the reinforcement process. The research results provide a reference for the reinforcement design of anchorage zone.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 April 2019

Mohammad Javad Kazemi, Shahabeddin Hatami, Abdolreza Zare and Ali Parvaneh

This paper aims to study the lateral behavior of cold-formed steel walls with K-shaped bracing by finite element modeling.

Abstract

Purpose

This paper aims to study the lateral behavior of cold-formed steel walls with K-shaped bracing by finite element modeling.

Design/methodology/approach

The braces which have the same section as those for studs and tracks are connected to the frame by screw connections. By pushover analysis, lateral performance of two frame categories, with different dimensions and bracing arrangements, is examined, and the force-displacement diagram and the ultimate strength of walls are extracted. Probable failure modes during lateral loading including distortional buckling of studs, buckling in braces and failure of connections are simulated in the numerical model, and some strengthening suggestions would be offered to prevent brittle failures and, therefore, to increase the lateral strength of the walls.

Findings

The strengthened walls are examined, and their seismic behavior is compared with the original walls. Finally, a parametric study is carried out to evaluate the effect of factors such as thickness of frame members, frame height and yield tension of members on lateral behavior of the shear walls.

Originality/value

In the present research, lateral strength and failure modes of nine types of cold-formed steel shear walls with different arrangements of K-shaped bracing are examined by non-linear finite element analysis, and a parametric study is carried out to extract the effect of the wall frame characteristics on the lateral behavior. Shear walls are classified into two series.

Details

World Journal of Engineering, vol. 16 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 March 2020

Hongshuai Gao and Quansheng Sun

With the rapid development of transportation and the continuous increase of traffic volume and load level, some bridges cannot meet the use requirements, and the demand for bridge…

Abstract

Purpose

With the rapid development of transportation and the continuous increase of traffic volume and load level, some bridges cannot meet the use requirements, and the demand for bridge strengthening is growing. Furthermore, bridges are affected by factors such as structure and external environment. With the increase of service time, the deterioration of bridges is also increasing. In order to avoid the waste caused by demolition and reconstruction, it is necessary to strengthen the bridge accurately and effectively to improve the bearing capacity and durability, eliminate the hidden dangers, and ensure the normal operation of the bridge. It is of great significance to study the strengthening methods. Compared with traditional strengthening methods, the advantages of using new materials and new technology to strengthen bridges are more obvious. This paper introduces a new method for bridge active strengthening, called modified polyurethane cement with prestressed steel wire rope (MPC-PSWR).

Design/methodology/approach

Relying on the actual bridge strengthening project, five T-beams of the superstructure of the bridge are taken as the research object, and the T-beams before and after strengthening are evaluated, calculated, and analyzed by finite element simulation and field load test. By comparing the numerical simulation and load test data, the strengthening effect of modified polyurethane cement with prestressed steel wire rope on stiffness, strength, and bearing capacity is verified, which proves that the strengthening effect of MPC-PSWR is effective for strengthening.

Findings

MPC-PSWR can effectively reduce deflection, cracks, and strain, thereby significantly improving the flexural capacity of existing bridges. Under the design load, the deflection, crack width, and stress of the strengthened beams decrease in varying degrees. The overall performance of the beams strengthened by MPC-PSWR has been improved, and the flexural performance meets the requirements of the code.

Originality/value

MPC-PSWR is an innovative bridge-strengthening method. Through the analysis of its MPC-PSWR effect, the MPC-PSWR method with reference to significance for the design and construction of similar bridges is put forward.

Details

International Journal of Structural Integrity, vol. 11 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Abstract

Details

Assessment Strategies for Knowledge Organizations
Type: Book
ISBN: 978-1-83867-610-0

1 – 10 of over 78000