Search results

1 – 10 of 163
Article
Publication date: 25 January 2024

Mehmet Küçük

Fabrics, which are one of the raw materials of the clothing industry, constitute approximately 40–45% of the total cost of an apparel product. Due to the labor-intensive nature of…

Abstract

Purpose

Fabrics, which are one of the raw materials of the clothing industry, constitute approximately 40–45% of the total cost of an apparel product. Due to the labor-intensive nature of this industry and failure to apply scientific methods along with the manufacturing processes, the wastes in the raw materials, including fabrics, become higher. Besides, quality deficiencies are encountered due to the same reasons. This study aims to determine the optimum total fabric layer height based on the fabric type during the cutting process with a straight knife cutting machine, which provided a decrease in the cutting errors.

Design/methodology/approach

Frequently used fabric types in an enterprise operating in organic cotton knitwear were listed. During the cutting tests, the straight knife cutting machine was used as the cutting device. The weight and thickness values of the fabrics were obtained to provide a comparison basis. Two different algorithms were created to evaluate the defective pieces according to fabric type, cutting height and error placement. Cutting resistances of these fabrics were also determined to evaluate the defect reasons. In the end, optimum total fabric layer count and total cutting height suggestions were proposed for each fabric type for a minimum cutting error.

Findings

At the end of this study, the error-free layers were identified per fabric type. At the same time, the optimum cutting height was suggested for each fabric basis. For 40/1 single jersey fabrics, the cutting height should be between 2.10 cm and 10.40 cm; for 30/1 single jersey fabrics, between 1.65 cm and 5.70 cm; for 20/1 single jersey fabrics, between 1.83 cm and 6.70 cm; for two-thread fleece fabrics, between 2.13 cm and 4.70 cm; and for three-thread fleece fabrics, between 0 cm and 4.90 cm.

Research limitations/implications

Within the scope of the study, since the products made of knitted fabric were produced more frequently and in large quantities, the study was carried out with 15 different types of knitted fabrics at 10 different layers. The same methods should be applied for woven, denim and nonwoven fabric types, which would shed light on the following studies.

Originality/value

Due to scarce research carried out on the cutting procedure of the clothing industry in regards to sustainability, this study aims to contribute to this area. The main difference between this study and the studies that mostly make mathematical predictions about the cutting procedure is that it is practice-oriented.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 25 December 2023

Zihan Dang and Naiming Xie

Assembly line is a common production form and has been effectively used in many industries, but the imprecise processing time of each process makes production line balancing and…

Abstract

Purpose

Assembly line is a common production form and has been effectively used in many industries, but the imprecise processing time of each process makes production line balancing and capacity forecasting the most troublesome problems for production managers. In this paper, uncertain man-hours are represented as interval grey numbers, and the optimization problem of production line balance in the case of interval grey man-hours is studied to better evaluate the production line capacity.

Design/methodology/approach

First, this paper constructs the basic model of assembly line balance optimization for the single-product scenario, and on this basis constructs an assembly line balance optimization model under the multi-product scenario with the objective function of maximizing the weighted greyscale production line balance rate, second, this paper designs a simulated annealing algorithm to solve problem. A neighborhood search strategy is proposed, based on assembly line balance optimization, an assembly line capacity evaluation method with interval grey man-hour characteristics is designed.

Findings

This paper provides a production line balance optimization scheme with uncertain processing time for multi-product scenarios and designs a capacity evaluation method to provide managers with scientific management strategies so that decision-makers can scientifically solve the problems that the company's design production line is quite different from the actual production situation.

Originality/value

There are few literary studies on combining interval grey number with assembly line balance optimization. Therefore, this paper makes an important contribution in this regard.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 25 January 2024

Anil Kumar Inkulu and M.V.A. Raju Bahubalendruni

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study…

Abstract

Purpose

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study aims to propose the reconfiguration of assembly systems by incorporating multiple humans with robots using a human–robot task allocation (HRTA) to enhance productivity.

Design/methodology/approach

A human–robot task scheduling approach has been developed by considering task suitability, resource availability and resource selection through multicriteria optimization using the Linear Regression with Optimal Point and Minimum Distance Calculation algorithm. Using line-balancing techniques, the approach estimates the optimum number of resources required for assembly tasks operating by minimum idle time.

Findings

The task allocation schedule for a case study involving a punching press was solved using human–robot collaboration, and the approach incorporated the optimum number of appropriate resources to handle different types of proportion of resources.

Originality/value

This proposed work integrates the task allocation by human–robot collaboration and decrease the idle time of resource by integrating optimum number of resources.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 12 May 2023

Marcello Braglia, Mosè Gallo, Leonardo Marrazzini and Liberatina Carmela Santillo

This paper proposes a new metric, named Operational Space Efficiency (OpSE), intended to diagnose and quantify the inefficient use of floor space for stocking materials in…

Abstract

Purpose

This paper proposes a new metric, named Operational Space Efficiency (OpSE), intended to diagnose and quantify the inefficient use of floor space for stocking materials in industrial workstations. OpSE presents a formulation analogous to the well-known Overall Equipment Effectiveness and can be obtained as the product of three distinct indicators: Standard Compliance Effectiveness, Standards Selection Effectiveness and Design Space-usage Effectiveness.

Design/methodology/approach

This indicator scrutinizes how usefully floor space in workstations is used to temporarily stock materials in the form of raw materials, semi-finished products, parts and components. It is suited for analyzing fixed-position layouts as well as product layouts typical of repetitive manufacturing settings, such as assembly lines in the automotive sector. The proposed indicator leverages an appropriate loss structure that features those factors affecting floor space utilization in workstations with regard to supplying and stocking materials.

Findings

An Italian manufacturer in the field of electro-technology was used as an industrial case study for the application of the methodology. The application shows how the three indicators work in practice, the effectiveness of OpSE and the methodology as a whole, in diagnosing floor space usage inefficiencies and in properly addressing improvement actions of the internal logistics in industrial settings.

Originality/value

The paper scrutinizes some important Key Performance Indicators (KPIs) dealing with space usage efficiency and identifies some significant drawbacks. Then it suggests a new, inclusive structure of losses and a KPI that not only measures efficiency but also allows to identify viable countermeasures.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 4
Type: Research Article
ISSN: 1741-0401

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

465

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Article
Publication date: 5 April 2024

Julianita Maria Scaranello Simões, José Carlos de Toledo and Fabiane Letícia Lizarelli

Front-line lean leadership is critical for implementing and sustaining lean production systems (LPS). The purpose of this paper is to analyze the relationships between front-line…

Abstract

Purpose

Front-line lean leadership is critical for implementing and sustaining lean production systems (LPS). The purpose of this paper is to analyze the relationships between front-line lean leader (FLL) capacities (cognitive, social, motivational, knowledge and experience), lean leader practices (developing people and supporting daily kaizen) and the degree of implementation of lean tools (pull system, involvement of employees and process control) in manufacturing companies.

Design/methodology/approach

A survey was conducted with FLLs from large Brazilian manufacturing companies. The survey collected 103 responses, 99 of which were validated. Data were analyzed using partial least squares structural equation modeling.

Findings

There was a positive, significant and direct relationship between FLL capacities, leadership practices and a degree of implementation of LPS tools on the shop floor. The validated model is a reference base for planning FLL capacities and practices that result in more effectively implementing LPS on the shop floor.

Practical implications

The findings provide managers with a new perspective on the importance of the development and training of FLLs focusing on leadership capacities. As decisions about developing lean capabilities impact the application of Lean leadership practices and the use of lean tools, they are also related to day-to-day lean activities and improved operational results. Additionally, the proposed model can be used by managers as a basis to diagnose, develop and select lean leaders.

Originality/value

This study seeks to fill a theoretical gap of knowledge on front-line lean leadership as it jointly addresses and empirically analyzes the existing relationships between lean leadership capacities, encompassing the perspective of psychology, lean practices and tools on the shop floor.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 22 January 2024

Haibo Feng and Caixia Zong

This study aims to investigate the influence and impact mechanism of capital tax incentives on firm innovation.

Abstract

Purpose

This study aims to investigate the influence and impact mechanism of capital tax incentives on firm innovation.

Design/methodology/approach

This study employs the difference-in-differences (DID) method, in conjunction with the exogenous impact of accelerated depreciation (AD) pilot policy. This study selects Chinese listed companies from 2010 to 2017 as the research sample.

Findings

Firstly, AD exerts a substantial positive effect on the quantity and quality of the innovation output of firms, and the positive impact results primarily from heightened investment in fixed assets, particularly, machinery and equipment. Secondly, the influence of the policy is pronounced in non-state-owned enterprises, mature enterprises, less capital-intensive enterprises and non-high-tech industries, which all exhibit strong innovation incentives. Lastly, the tax incentive policy significantly stimulates firm innovation in the short term, but its long-term impact on innovation incentives lacks statistical significance.

Originality/value

This study highlights the significance of capital tax incentives in facilitating the innovation process in firms.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 16 April 2024

Shilong Zhang, Changyong Liu, Kailun Feng, Chunlai Xia, Yuyin Wang and Qinghe Wang

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction…

Abstract

Purpose

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction method safely, real-time monitoring of the bridge rotation process is required to ensure a smooth swivel operation without collisions. However, the traditional means of monitoring using Electronic Total Station tools cannot realize real-time monitoring, and monitoring using motion sensors or GPS is cumbersome to use.

Design/methodology/approach

This study proposes a monitoring method based on a series of computer vision (CV) technologies, which can monitor the rotation angle, velocity and inclination angle of the swivel construction in real-time. First, three proposed CV algorithms was developed in a laboratory environment. The experimental tests were carried out on a bridge scale model to select the outperformed algorithms for rotation, velocity and inclination monitor, respectively, as the final monitoring method in proposed method. Then, the selected method was implemented to monitor an actual bridge during its swivel construction to verify the applicability.

Findings

In the laboratory study, the monitoring data measured with the selected monitoring algorithms was compared with those measured by an Electronic Total Station and the errors in terms of rotation angle, velocity and inclination angle, were 0.040%, 0.040%, and −0.454%, respectively, thus validating the accuracy of the proposed method. In the pilot actual application, the method was shown to be feasible in a real construction application.

Originality/value

In a well-controlled laboratory the optimal algorithms for bridge swivel construction are identified and in an actual project the proposed method is verified. The proposed CV method is complementary to the use of Electronic Total Station tools, motion sensors, and GPS for safety monitoring of swivel construction of bridges. It also contributes to being a possible approach without data-driven model training. Its principal advantages are that it both provides real-time monitoring and is easy to deploy in real construction applications.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 May 2022

Lucas B. Nhelekwa, Joshua Z. Mollel and Ismail W.R. Taifa

Industry 4.0 has an inimitable potential to create competitive advantages for the apparel industry by enhancing productivity, production, profitability, efficiency and…

Abstract

Purpose

Industry 4.0 has an inimitable potential to create competitive advantages for the apparel industry by enhancing productivity, production, profitability, efficiency and effectiveness. This study, thus, aims to assess the digitalisation level of the Tanzanian apparel industry through the Industry 4.0 perspectives.

Design/methodology/approach

A mixed-methods-based approach was deployed. This study deployed semi-structured interviews, document review and observation methods for the qualitative approach. For the quantitative approach, closed-ended questionnaires were used to ascertain the digitalisation levels and maturity level of the textiles and apparel (T&A) factories and small and medium-sized textile enterprises in Tanzania. The sample size was 110, with participants engaged through the purposive sampling technique.

Findings

Industry 4.0 frameworks evolved into practices mainly since 2011 in several service and manufacturing industries globally. For Tanzania, the findings indicate that the overall maturity level of the T&A industries is 2.5 out of 5.0, demonstrating a medium level of adoption. Thus, the apparel industries are not operating under the industry 4.0 framework; they are operating within the third industrial revolution – Industry 3.0 – framework. For such industries to operate within the fourth industrial revolution – Industry 4.0 – that is only possible if there is significantly well-developed industrial infrastructure, availability of engineering talent, stable commercial partnerships, demand from the marketplace and transactional relationship with customers.

Research limitations/implications

This study’s limitations include: firstly, Industry 4.0 is an emerging area; this resulted in limited theoretical underpinnings in the Tanzanian perspectives. Secondly, the studied industries may not suffice the need to generalise the findings for the entire country, thus needing another study.

Originality/value

Although Industry 4.0 conceptual frameworks have been on trial in several industries since 2011, this is amongst the first empirical research on Industry 4.0 in the Tanzanian apparel industry that assesses the digitalisation levels.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 26 December 2023

Sohaib Mustafa, Sehrish Rana and Muhammad Mateen Naveed

This study explores the adoption of Industry 4.0 in developing countries' export industries, focusing on factors influencing this adoption, the moderating role of market pressure…

174

Abstract

Purpose

This study explores the adoption of Industry 4.0 in developing countries' export industries, focusing on factors influencing this adoption, the moderating role of market pressure and prioritizing key factors for sustainable growth.

Design/methodology/approach

Based on the “TOE theory” this study has proposed a research framework to identify the factors influencing the adoption and sustainable implementation of Industry 4.0 in the export industry. This study has collected valid datasets from 387 export-oriented industries and applied SEM-ANN dual-stage hybrid model to capture linear and nonlinear interaction between variables.

Findings

Results revealed that Technical Capabilities, System Flexibility, Software Infrastructure, Human Resource Competency and Market pressure significantly influence the Adoption of Industry 4.0. Higher market pressure as a moderator also improves the Industry 4.0 adoption process. Results also pointed out that system flexibility is a gray area in Industry 4.0 adoption, which can be enhanced in the export industry to maintain a sustainable adoption and implementation of Industry 4.0.

Originality/value

Minute information is available on the factors influencing the adoption of Industry 4.0 in export-oriented industries. This study has empirically explored the role of influential factors in Industry 4.0 and ranked them based on their normalized importance.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 2
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of 163