Search results

1 – 10 of 334
Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

152

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 1 January 2024

Masoud Parsi, Vahid Baradaran and Amir Hossein Hosseinian

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of…

Abstract

Purpose

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of offshore projects and their environmental-degrading effects have been embraced as well. The durations of activities are uncertain in this model. The developed formulation is tri-objective that seeks to minimize the expected time, total cost and CO2 emission of all projects.

Design/methodology/approach

A new version of the multiobjective multiagent optimization (MOMAO) algorithm has been proposed to solve the amalgamated model. To empower the MOMAO, various procedures of this algorithm have been modified based on the multiattribute utility theory (MAUT) technique. Along with the MOMAO, this study has employed four other meta-heuristic methodologies to solve the model as well.

Findings

The outputs of the MOMAO have been put to test against four other optimizers in terms of convergence, diversity, uniformity and computation times. The results of the Mean Ideal Distance (MID) metric have revealed that the MOMAO has strongly prevailed its rival optimizers. In terms of diversity of the acquired solutions, the MOMAO has ranked the first among all employed optimizers since this algorithm has offered the best solutions in 56.66 and 63.33% of the test problems regarding the diversification metric and hyper-volume metrics. Regarding the uniformity of results, which is measured through the spacing metric (SP), the MOMAO has presented the best SP values in more than 96% of the test problems. The MOMAO has needed more computation times in comparison to its rivals.

Practical implications

A real case study comprising two concurrent offshore projects has been offered. The proposed formulation and the MOMAO have been implemented for this case study, and their effectiveness has been appraised.

Originality/value

Very few studies have focused on presenting an integrated formulation for the stochastic multiproject scheduling and material ordering problems. The model embraces some of the characteristics of the offshore projects which have not been adequately studied in the literature. Limited capacities of the offshore platforms and cargo vessels have been embedded in the proposed model. The offshore platforms have spatial limitations in storing the required materials. The vessels are also capacitated and they also have limited shipment capacities. Some of the required materials need to be transported from the base to the offshore platform via a fleet of cargo vessels. The workforces and equipment can become idle on the offshore platform due to material shortage. Various offshore-related costs have been integrated as a minimization objective function in the model. The cargo vessels release CO2 detrimental emissions to the environment which are sought to be minimized in the developed formulation. To the best of the authors' knowledge, the MOMAO has not been sufficiently employed as a solution methodology for the stochastic multiproject scheduling and material ordering problems.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 26 December 2023

Mehmet Kursat Oksuz and Sule Itir Satoglu

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response…

Abstract

Purpose

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response is crucial for effectively managing medical centres, staff allocation and casualty distribution during emergencies. To address this issue, this study aims to introduce a multi-objective stochastic programming model to enhance disaster preparedness and response, focusing on the critical first 72 h after earthquakes. The purpose is to optimize the allocation of resources, temporary medical centres and medical staff to save lives effectively.

Design/methodology/approach

This study uses stochastic programming-based dynamic modelling and a discrete-time Markov Chain to address uncertainty. The model considers potential road and hospital damage and distance limits and introduces an a-reliability level for untreated casualties. It divides the initial 72 h into four periods to capture earthquake dynamics.

Findings

Using a real case study in Istanbul’s Kartal district, the model’s effectiveness is demonstrated for earthquake scenarios. Key insights include optimal medical centre locations, required capacities, necessary medical staff and casualty allocation strategies, all vital for efficient disaster response within the critical first 72 h.

Originality/value

This study innovates by integrating stochastic programming and dynamic modelling to tackle post-disaster medical response. The use of a Markov Chain for uncertain health conditions and focus on the immediate aftermath of earthquakes offer practical value. By optimizing resource allocation amid uncertainties, the study contributes significantly to disaster management and HT research.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Book part
Publication date: 23 October 2023

Glenn W. Harrison and Don Ross

Behavioral economics poses a challenge for the welfare evaluation of choices, particularly those that involve risk. It demands that we recognize that the descriptive account of…

Abstract

Behavioral economics poses a challenge for the welfare evaluation of choices, particularly those that involve risk. It demands that we recognize that the descriptive account of behavior toward those choices might not be the ones we were all taught, and still teach, and that subjective risk perceptions might not accord with expert assessments of probabilities. In addition to these challenges, we are faced with the need to jettison naive notions of revealed preferences, according to which every choice by a subject expresses her objective function, as behavioral evidence forces us to confront pervasive inconsistencies and noise in a typical individual’s choice data. A principled account of errant choice must be built into models used for identification and estimation. These challenges demand close attention to the methodological claims often used to justify policy interventions. They also require, we argue, closer attention by economists to relevant contributions from cognitive science. We propose that a quantitative application of the “intentional stance” of Dennett provides a coherent, attractive and general approach to behavioral welfare economics.

Details

Models of Risk Preferences: Descriptive and Normative Challenges
Type: Book
ISBN: 978-1-83797-269-2

Keywords

Article
Publication date: 3 January 2023

Nurcan Deniz and Feristah Ozcelik

Although disassembly balancing lines has been studied for over two decades, there is a gap in the robotic disassembly. Moreover, combination of problem with heterogeneous employee…

Abstract

Purpose

Although disassembly balancing lines has been studied for over two decades, there is a gap in the robotic disassembly. Moreover, combination of problem with heterogeneous employee assignment is also lacking. The hazard related with the tasks performed on disassembly lines on workers can be reduced by the use of robots or collaborative robots (cobots) instead of workers. This situation causes an increase in costs. The purpose of the study is to propose a novel version of the problem and to solve this bi-objective (minimizing cost and minimizing hazard simultaneously) problem.

Design/methodology/approach

The epsilon constraint method was used to solve the bi-objective model. Entropy-based Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Preference Ranking Organization methods for Enrichment Evaluation (PROMETHEE) methods were used to support the decision-maker. In addition, a new criterion called automation rate was proposed. The effects of factors were investigated with full factor experiment design.

Findings

The effects of all factors were found statistically significant on the solution time. The combined effect of the number of tasks and number of workers was also found to be statistically significant.

Originality/value

In this study, for the first time in the literature, a disassembly line balancing and employee assignment model was proposed in the presence of heterogeneous workers, robots and cobots to simultaneously minimize the hazard to the worker and cost.

Article
Publication date: 19 March 2024

John Maleyeff and Jingran Xu

The article addresses the optimization of safety stock service levels for parts in a repair kit. The work was undertaken to assist a public transit entity that stores thousands of…

Abstract

Purpose

The article addresses the optimization of safety stock service levels for parts in a repair kit. The work was undertaken to assist a public transit entity that stores thousands of parts used to repair equipment acquired over many decades. Demand is intermittent, procurement lead times are long, and the total inventory investment is significant.

Design/methodology/approach

Demand exists for repair kits, and a repair cannot start until all required parts are available. The cost model includes holding cost to carry the part being modeled as well as shortage cost that consists of the holding cost to carry all other repair kit parts for the duration of the part’s lead time. The model combines deterministic and stochastic approaches by assuming a fixed ordering cycle with Poisson demand.

Findings

The results show that optimal service levels vary as a function of repair demand rate, part lead time, and cost of the part as a percentage of the total part cost for the repair kit. Optimal service levels are higher for inexpensive parts and lower for expensive parts, although the precise levels are impacted by repair demand and part lead time.

Social implications

The proposed model can impact society by improving the operational performance and efficiency of public transit systems, by ensuring that home repair technicians will be prepared for repair tasks, and by reducing the environmental impact of electronic waste consistent with the right-to-repair movement.

Originality/value

The optimization model is unique because (1) it quantifies shortage cost as the cost of unnecessary holding other parts in the repair kit during the shortage time, and (2) it determines a unique service level for each part in a repair kit bases on its lead time, its unit cost, and the total cost of all parts in the repair kit. Results will be counter-intuitive for many inventory managers who would assume that more critical parts should have higher service levels.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 2 January 2023

Mehdi Namazi, Madjid Tavana, Emran Mohammadi and Ali Bonyadi Naeini

New business practices and the globalization of markets force firms to take innovation as the fundamental pillar of their competitive strategy. Research and Development (R&D…

Abstract

Purpose

New business practices and the globalization of markets force firms to take innovation as the fundamental pillar of their competitive strategy. Research and Development (R&D) plays a vital role in innovation. As technology advances and product life cycles become shorter, firms rely on R&D as a strategy to invigorate innovation. R&D project portfolio selection is a complex and challenging task. Despite the management's efforts to implement the best project portfolio selection practices, many projects continue to fail or miss their target. The problem is that selecting R&D projects requires a deep understanding of strategic vision and technical capabilities. However, many decision-makers lack technological insight or strategic vision. This article aims to provide a method to capitalize on the expertise of R&D professionals to assist managers in making informed and effective decisions. It also provides a framework for aligning the portfolio of R&D projects with the organizational vision and mission.

Design/methodology/approach

This article proposes a new strategic approach for R&D project portfolio selection using efficiency-uncertainty maps.

Findings

The proposed strategy plane helps decision-makers align R&D project portfolios with their strategies to combine a strategic view and numerical analysis in this research. The proposed strategy plane consists of four areas: Exploitation Zone, Challenge Zone, Desperation Zone and Discretion Zone. Mapping the project into this strategic plane would help decision-makers align their project portfolio according to the corporate perspectives.

Originality/value

The new approach combines the efficiency and uncertainty dimensions in portfolio selection into an integrated framework that: (i) provides a complete representation of the stochastic decision-making processes, (ii) models the endogenous uncertainty inherent in the project selection process and (iii) proposes a computationally practical and visually unique solution procedure for classifying desirable and undesirable R&D projects.

Details

Benchmarking: An International Journal, vol. 30 no. 10
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 29 December 2023

Thanh-Nghi Do and Minh-Thu Tran-Nguyen

This study aims to propose novel edge device-tailored federated learning algorithms of local classifiers (stochastic gradient descent, support vector machines), namely, FL-lSGD…

Abstract

Purpose

This study aims to propose novel edge device-tailored federated learning algorithms of local classifiers (stochastic gradient descent, support vector machines), namely, FL-lSGD and FL-lSVM. These algorithms are designed to address the challenge of large-scale ImageNet classification.

Design/methodology/approach

The authors’ FL-lSGD and FL-lSVM trains in a parallel and incremental manner to build an ensemble local classifier on Raspberry Pis without requiring data exchange. The algorithms load small data blocks of the local training subset stored on the Raspberry Pi sequentially to train the local classifiers. The data block is split into k partitions using the k-means algorithm, and models are trained in parallel on each data partition to enable local data classification.

Findings

Empirical test results on the ImageNet data set show that the authors’ FL-lSGD and FL-lSVM algorithms with 4 Raspberry Pis (Quad core Cortex-A72, ARM v8, 64-bit SoC @ 1.5GHz, 4GB RAM) are faster than the state-of-the-art LIBLINEAR algorithm run on a PC (Intel(R) Core i7-4790 CPU, 3.6 GHz, 4 cores, 32GB RAM).

Originality/value

Efficiently addressing the challenge of large-scale ImageNet classification, the authors’ novel federated learning algorithms of local classifiers have been tailored to work on the Raspberry Pi. These algorithms can handle 1,281,167 images and 1,000 classes effectively.

Details

International Journal of Web Information Systems, vol. 20 no. 1
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 21 December 2023

Majid Rahi, Ali Ebrahimnejad and Homayun Motameni

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is…

Abstract

Purpose

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is important. Unfortunately, the traditional use of water by humans for agricultural purposes contradicts the concept of optimal consumption. Therefore, designing and implementing a mechanized irrigation system is of the highest importance. This system includes hardware equipment such as liquid altimeter sensors, valves and pumps which have a failure phenomenon as an integral part, causing faults in the system. Naturally, these faults occur at probable time intervals, and the probability function with exponential distribution is used to simulate this interval. Thus, before the implementation of such high-cost systems, its evaluation is essential during the design phase.

Design/methodology/approach

The proposed approach included two main steps: offline and online. The offline phase included the simulation of the studied system (i.e. the irrigation system of paddy fields) and the acquisition of a data set for training machine learning algorithms such as decision trees to detect, locate (classification) and evaluate faults. In the online phase, C5.0 decision trees trained in the offline phase were used on a stream of data generated by the system.

Findings

The proposed approach is a comprehensive online component-oriented method, which is a combination of supervised machine learning methods to investigate system faults. Each of these methods is considered a component determined by the dimensions and complexity of the case study (to discover, classify and evaluate fault tolerance). These components are placed together in the form of a process framework so that the appropriate method for each component is obtained based on comparison with other machine learning methods. As a result, depending on the conditions under study, the most efficient method is selected in the components. Before the system implementation phase, its reliability is checked by evaluating the predicted faults (in the system design phase). Therefore, this approach avoids the construction of a high-risk system. Compared to existing methods, the proposed approach is more comprehensive and has greater flexibility.

Research limitations/implications

By expanding the dimensions of the problem, the model verification space grows exponentially using automata.

Originality/value

Unlike the existing methods that only examine one or two aspects of fault analysis such as fault detection, classification and fault-tolerance evaluation, this paper proposes a comprehensive process-oriented approach that investigates all three aspects of fault analysis concurrently.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Book part
Publication date: 23 October 2023

Nathaniel T. Wilcox

The author presents new estimates of the probability weighting functions found in rank-dependent theories of choice under risk. These estimates are unusual in two senses. First…

Abstract

The author presents new estimates of the probability weighting functions found in rank-dependent theories of choice under risk. These estimates are unusual in two senses. First, they are free of functional form assumptions about both utility and weighting functions, and they are entirely based on binary discrete choices and not on matching or valuation tasks, though they depend on assumptions concerning the nature of probabilistic choice under risk. Second, estimated weighting functions contradict widely held priors of an inverse-s shape with fixed point well in the interior of the (0,1) interval: Instead the author usually finds populations dominated by “optimists” who uniformly overweight best outcomes in risky options. The choice pairs used here mostly do not provoke similarity-based simplifications. In a third experiment, the author shows that the presence of choice pairs that provoke similarity-based computational shortcuts does indeed flatten estimated probability weighting functions.

Details

Models of Risk Preferences: Descriptive and Normative Challenges
Type: Book
ISBN: 978-1-83797-269-2

Keywords

1 – 10 of 334