Search results

1 – 10 of 630
Article
Publication date: 15 August 2023

Wenlong Cheng and Wenjun Meng

This study aims to address the challenge of automatic guided vehicle (AGV) scheduling for parcel storage and retrieval in an intelligent warehouse.

Abstract

Purpose

This study aims to address the challenge of automatic guided vehicle (AGV) scheduling for parcel storage and retrieval in an intelligent warehouse.

Design/methodology/approach

This study presents a scheduling solution that aims to minimize the maximum completion time for the AGV scheduling problem in an intelligent warehouse. First, a mixed-integer linear programming model is established, followed by the proposal of a novel genetic algorithm to solve the scheduling problem of multiple AGVs. The improved algorithm includes operations such as the initial population optimization of picking up goods based on the principle of the nearest distance, adaptive crossover operation evolving with iteration, mutation operation of equivalent exchange and an algorithm restart strategy to expand search ability and avoid falling into a local optimal solution. Moreover, the routing rules of AGV are described.

Findings

By conducting a series of comparative experiments based on the actual package flow situation of an intelligent warehouse, the results demonstrate that the proposed genetic algorithm in this study outperforms existing algorithms, and can produce better solutions for the AGV scheduling problem.

Originality/value

This paper optimizes the different iterative steps of the genetic algorithm and designs an improved genetic algorithm, which is more suitable for solving the AGV scheduling problem in the warehouse. In addition, a path collision avoidance strategy that matches the algorithm is proposed, making this research more applicable to real-world scheduling environments.

Details

Robotic Intelligence and Automation, vol. 43 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

171

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 16 June 2023

Taho Yang, Mei-Chuan Wang and Yiyo Kuo

The main operations of the powder-coating process are staggered along a closed-loop conveyor. Given the volatile market demands, using a fixed level of staffing may result in…

Abstract

Purpose

The main operations of the powder-coating process are staggered along a closed-loop conveyor. Given the volatile market demands, using a fixed level of staffing may result in significant productivity losses. The present study aims to capture stochastic behavior and optimize operator assignment problems in a practical powder-coating process. By using the proposed methodology, when demand changes, the optimal operator assignment configuration can be provided, ensuring high labor productivity.

Design/methodology/approach

The powder-coating process is an important industrial application and is often a labor-intensive system. The present study adopts a practical case to optimize its staffing level. Because of its operational complexity, the problem is solved by a proposed simulation-optimization approach. The results are promising, and the proposed methodology is shown to be an effective approach.

Findings

The proposed methodology was tested for various demand levels. The optimized operator assignment configuration always improves on the performance of other staffing levels. Given the same daily throughput, the optimized operator assignment configuration can improve performance by as much as 19%. In scenarios where there is increased demand, the resulting reduction in overtime work improves performance by between 20.33% and 56.72%. In scenarios where there is reduced demand, the optimized staffing level produces improvements between 3.13% and 50%. Compared with the fixed staffing policy of the case company, the flexible staffing policy of the proposed methodology can maintain high labor productivity across demand variations. The results are consistent with the Shojinka philosophy of the Toyota Production System.

Originality/value

This study proposes a solution to the operator assignment decision in a labor-intensive manufacturing system – a powder-coating processing system. Powder coating provides a solid powder coating without any solvent. Because of its excellent application performance and environmental protection, it is widely used in the field of metal coating, especially appliances for offices and homes. Most of the existing literature has solved the problem by making unrealistic assumptions. The present study proposes a simulation-optimization method to solve a practical problem in powder-coating processing. The effectiveness of the proposed methodology is illustrated by a practical application. According to the experimental results, five operators can be saved for the same daily throughput. An average of 35 and 19 min of overtimes can be saved when demand increases by 10% and 20% with one less operator; between 2 and 16 operators can be saved when demand falls by 10%–60%.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 January 2024

Masoud Parsi, Vahid Baradaran and Amir Hossein Hosseinian

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of…

Abstract

Purpose

The purpose of this study is to develop an integrated model for the stochastic multiproject scheduling and material ordering problems, where some of the prominent features of offshore projects and their environmental-degrading effects have been embraced as well. The durations of activities are uncertain in this model. The developed formulation is tri-objective that seeks to minimize the expected time, total cost and CO2 emission of all projects.

Design/methodology/approach

A new version of the multiobjective multiagent optimization (MOMAO) algorithm has been proposed to solve the amalgamated model. To empower the MOMAO, various procedures of this algorithm have been modified based on the multiattribute utility theory (MAUT) technique. Along with the MOMAO, this study has employed four other meta-heuristic methodologies to solve the model as well.

Findings

The outputs of the MOMAO have been put to test against four other optimizers in terms of convergence, diversity, uniformity and computation times. The results of the Mean Ideal Distance (MID) metric have revealed that the MOMAO has strongly prevailed its rival optimizers. In terms of diversity of the acquired solutions, the MOMAO has ranked the first among all employed optimizers since this algorithm has offered the best solutions in 56.66 and 63.33% of the test problems regarding the diversification metric and hyper-volume metrics. Regarding the uniformity of results, which is measured through the spacing metric (SP), the MOMAO has presented the best SP values in more than 96% of the test problems. The MOMAO has needed more computation times in comparison to its rivals.

Practical implications

A real case study comprising two concurrent offshore projects has been offered. The proposed formulation and the MOMAO have been implemented for this case study, and their effectiveness has been appraised.

Originality/value

Very few studies have focused on presenting an integrated formulation for the stochastic multiproject scheduling and material ordering problems. The model embraces some of the characteristics of the offshore projects which have not been adequately studied in the literature. Limited capacities of the offshore platforms and cargo vessels have been embedded in the proposed model. The offshore platforms have spatial limitations in storing the required materials. The vessels are also capacitated and they also have limited shipment capacities. Some of the required materials need to be transported from the base to the offshore platform via a fleet of cargo vessels. The workforces and equipment can become idle on the offshore platform due to material shortage. Various offshore-related costs have been integrated as a minimization objective function in the model. The cargo vessels release CO2 detrimental emissions to the environment which are sought to be minimized in the developed formulation. To the best of the authors' knowledge, the MOMAO has not been sufficiently employed as a solution methodology for the stochastic multiproject scheduling and material ordering problems.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 26 December 2023

Mehmet Kursat Oksuz and Sule Itir Satoglu

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response…

Abstract

Purpose

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response is crucial for effectively managing medical centres, staff allocation and casualty distribution during emergencies. To address this issue, this study aims to introduce a multi-objective stochastic programming model to enhance disaster preparedness and response, focusing on the critical first 72 h after earthquakes. The purpose is to optimize the allocation of resources, temporary medical centres and medical staff to save lives effectively.

Design/methodology/approach

This study uses stochastic programming-based dynamic modelling and a discrete-time Markov Chain to address uncertainty. The model considers potential road and hospital damage and distance limits and introduces an a-reliability level for untreated casualties. It divides the initial 72 h into four periods to capture earthquake dynamics.

Findings

Using a real case study in Istanbul’s Kartal district, the model’s effectiveness is demonstrated for earthquake scenarios. Key insights include optimal medical centre locations, required capacities, necessary medical staff and casualty allocation strategies, all vital for efficient disaster response within the critical first 72 h.

Originality/value

This study innovates by integrating stochastic programming and dynamic modelling to tackle post-disaster medical response. The use of a Markov Chain for uncertain health conditions and focus on the immediate aftermath of earthquakes offer practical value. By optimizing resource allocation amid uncertainties, the study contributes significantly to disaster management and HT research.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Book part
Publication date: 23 October 2023

Glenn W. Harrison and Don Ross

Behavioral economics poses a challenge for the welfare evaluation of choices, particularly those that involve risk. It demands that we recognize that the descriptive account of…

Abstract

Behavioral economics poses a challenge for the welfare evaluation of choices, particularly those that involve risk. It demands that we recognize that the descriptive account of behavior toward those choices might not be the ones we were all taught, and still teach, and that subjective risk perceptions might not accord with expert assessments of probabilities. In addition to these challenges, we are faced with the need to jettison naive notions of revealed preferences, according to which every choice by a subject expresses her objective function, as behavioral evidence forces us to confront pervasive inconsistencies and noise in a typical individual’s choice data. A principled account of errant choice must be built into models used for identification and estimation. These challenges demand close attention to the methodological claims often used to justify policy interventions. They also require, we argue, closer attention by economists to relevant contributions from cognitive science. We propose that a quantitative application of the “intentional stance” of Dennett provides a coherent, attractive and general approach to behavioral welfare economics.

Details

Models of Risk Preferences: Descriptive and Normative Challenges
Type: Book
ISBN: 978-1-83797-269-2

Keywords

Article
Publication date: 30 March 2023

Rafael Diaz and Ali Ardalan

Motivated by recent research indicating that the operational performance of an enterprise can be enhanced by building a supporting data-driven environment in which to operate…

Abstract

Purpose

Motivated by recent research indicating that the operational performance of an enterprise can be enhanced by building a supporting data-driven environment in which to operate, this paper presents a simulation framework that enables an examination of the effects of applying smart manufacturing principles to conventional production systems, intending to transition to digital platforms.

Design/methodology/approach

To investigate the extent to which conventional production systems can be transformed into novel data-driven environments, the well-known constant work-in-process (CONWIP) production systems and considered production sequencing assignments in flowshops were studied. As a result, a novel data-driven priority heuristic, Net-CONWIP was designed and studied, based on the ability to collect real-time information about customer demand and work-in-process inventory, which was applied as part of a distributed and decentralised production sequencing analysis. Application of heuristics like the Net-CONWIP is only possible through the ability to collect and use real-time data offered by a data-driven system. A four-stage application framework to assist practitioners in applying the proposed model was created.

Findings

To assess the robustness of the Net-CONWIP heuristic under the simultaneous effects of different levels of demand, its different levels of variability and the presence of bottlenecks, the performance of Net-CONWIP with conventional CONWIP systems that use first come, first served priority rule was compared. The results show that the Net-CONWIP priority rule significantly reduced customer wait time in all cases relative to FCFS.

Originality/value

Previous research suggests there is considerable value in creating data-driven environments. This study provides a simulation framework that guides the construction of a digital transformation environment. The suggested framework facilitates the inclusion and analysis of relevant smart manufacturing principles in production systems and enables the design and testing of new heuristics that employ real-time data to improve operational performance. An approach that can guide the structuring of data-driven environments in production systems is currently lacking. This paper bridges this gap by proposing a framework to facilitate the design of digital transformation activities, explore their impact on production systems and improve their operational performance.

Details

Industrial Management & Data Systems, vol. 123 no. 5
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 3 January 2023

Nurcan Deniz and Feristah Ozcelik

Although disassembly balancing lines has been studied for over two decades, there is a gap in the robotic disassembly. Moreover, combination of problem with heterogeneous employee…

Abstract

Purpose

Although disassembly balancing lines has been studied for over two decades, there is a gap in the robotic disassembly. Moreover, combination of problem with heterogeneous employee assignment is also lacking. The hazard related with the tasks performed on disassembly lines on workers can be reduced by the use of robots or collaborative robots (cobots) instead of workers. This situation causes an increase in costs. The purpose of the study is to propose a novel version of the problem and to solve this bi-objective (minimizing cost and minimizing hazard simultaneously) problem.

Design/methodology/approach

The epsilon constraint method was used to solve the bi-objective model. Entropy-based Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Preference Ranking Organization methods for Enrichment Evaluation (PROMETHEE) methods were used to support the decision-maker. In addition, a new criterion called automation rate was proposed. The effects of factors were investigated with full factor experiment design.

Findings

The effects of all factors were found statistically significant on the solution time. The combined effect of the number of tasks and number of workers was also found to be statistically significant.

Originality/value

In this study, for the first time in the literature, a disassembly line balancing and employee assignment model was proposed in the presence of heterogeneous workers, robots and cobots to simultaneously minimize the hazard to the worker and cost.

Book part
Publication date: 4 September 2023

Stephen E. Spear and Warren Young

Abstract

Details

Overlapping Generations: Methods, Models and Morphology
Type: Book
ISBN: 978-1-83753-052-6

Article
Publication date: 19 March 2024

John Maleyeff and Jingran Xu

The article addresses the optimization of safety stock service levels for parts in a repair kit. The work was undertaken to assist a public transit entity that stores thousands of…

Abstract

Purpose

The article addresses the optimization of safety stock service levels for parts in a repair kit. The work was undertaken to assist a public transit entity that stores thousands of parts used to repair equipment acquired over many decades. Demand is intermittent, procurement lead times are long, and the total inventory investment is significant.

Design/methodology/approach

Demand exists for repair kits, and a repair cannot start until all required parts are available. The cost model includes holding cost to carry the part being modeled as well as shortage cost that consists of the holding cost to carry all other repair kit parts for the duration of the part’s lead time. The model combines deterministic and stochastic approaches by assuming a fixed ordering cycle with Poisson demand.

Findings

The results show that optimal service levels vary as a function of repair demand rate, part lead time, and cost of the part as a percentage of the total part cost for the repair kit. Optimal service levels are higher for inexpensive parts and lower for expensive parts, although the precise levels are impacted by repair demand and part lead time.

Social implications

The proposed model can impact society by improving the operational performance and efficiency of public transit systems, by ensuring that home repair technicians will be prepared for repair tasks, and by reducing the environmental impact of electronic waste consistent with the right-to-repair movement.

Originality/value

The optimization model is unique because (1) it quantifies shortage cost as the cost of unnecessary holding other parts in the repair kit during the shortage time, and (2) it determines a unique service level for each part in a repair kit bases on its lead time, its unit cost, and the total cost of all parts in the repair kit. Results will be counter-intuitive for many inventory managers who would assume that more critical parts should have higher service levels.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of 630