Search results

1 – 10 of over 1000
Article
Publication date: 12 October 2022

Limin Su, YongChao Cao, Huimin Li and Chengyi Zhang

The optimal payment in the whole operation and maintenance period of water environment treatment PPP projects has become the main approach to realize sustainable development of…

Abstract

Purpose

The optimal payment in the whole operation and maintenance period of water environment treatment PPP projects has become the main approach to realize sustainable development of projects. This study is aimed at constructing an effective payment model for the whole life period of projects to achieve win-win among all stakeholders, so as to provide a theoretical reference and managerial implications for the public sector in the whole operation and maintenance period.

Design/methodology/approach

In the whole operation and maintenance period of water environment treatment PPP projects, this article investigates how the public sector optimizes the payment in the whole operation and maintenance period of projects. Firstly, the projects' whole operation and maintenance period is divided into several stages according to the performance appraisal period. And then, the multi-stage dynamic programming model is constructed to design the payment construct model for the public sector in each performance appraisal stage. The payment from the public sector is the decision variable, and the deduction from the private sector is a random variable.

Findings

The optimal payment model showed that the relatively less objective weight of public sector leaded to its relatively more total payment and vice versa. Therefore, the sustainable development of the projects can only be ensured when the objective weights both of them should be balanced. Additionally, the deduction from the performance appraisal of private sector plays an important role in the model construction. The larger deduction the private sector undertakes, the smaller profits private sector has. Since the deduction at each stage is a random variable, the deduction varies with the different probability distributions obeyed by the practical deduction in each stage.

Research limitations/implications

The findings from this study have provided theoretical and application references, and some managerial implications are also given. First, the improvement of the pricing system of public sector should be accelerated. Second, the reasonable profit of the private sector must be guaranteed. While pursuing the maximization of social benefits, the public sector should make full use of the price sharing mechanism in the market and supervise the real income situation of the private sector. Third is increasing the public to participate in pricing. Additionally, it is a limitation that the deduction is assumed to conform to a uniform distribution in this study. Other probability distributions on deduction can be essentially further sought, so as to be more line with the actual situation of the projects.

Originality/value

The optimal payment in whole operation and maintenance period of the projects has become an important issue, which is a key to project success. This study constructs a multi-stage dynamic programming model to optimize payment in the whole period of projects. Additionally, this study adds its value through deeply developing the new theories of optimal payment to more suitable for the practical problems, so that to optimize the design of payment mechanism. Meanwhile, a valuable reference for public and private sectors is provided to ensure the sustainable development of the projects.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 January 2023

Mehdi Namazi, Madjid Tavana, Emran Mohammadi and Ali Bonyadi Naeini

New business practices and the globalization of markets force firms to take innovation as the fundamental pillar of their competitive strategy. Research and Development (R&D…

Abstract

Purpose

New business practices and the globalization of markets force firms to take innovation as the fundamental pillar of their competitive strategy. Research and Development (R&D) plays a vital role in innovation. As technology advances and product life cycles become shorter, firms rely on R&D as a strategy to invigorate innovation. R&D project portfolio selection is a complex and challenging task. Despite the management's efforts to implement the best project portfolio selection practices, many projects continue to fail or miss their target. The problem is that selecting R&D projects requires a deep understanding of strategic vision and technical capabilities. However, many decision-makers lack technological insight or strategic vision. This article aims to provide a method to capitalize on the expertise of R&D professionals to assist managers in making informed and effective decisions. It also provides a framework for aligning the portfolio of R&D projects with the organizational vision and mission.

Design/methodology/approach

This article proposes a new strategic approach for R&D project portfolio selection using efficiency-uncertainty maps.

Findings

The proposed strategy plane helps decision-makers align R&D project portfolios with their strategies to combine a strategic view and numerical analysis in this research. The proposed strategy plane consists of four areas: Exploitation Zone, Challenge Zone, Desperation Zone and Discretion Zone. Mapping the project into this strategic plane would help decision-makers align their project portfolio according to the corporate perspectives.

Originality/value

The new approach combines the efficiency and uncertainty dimensions in portfolio selection into an integrated framework that: (i) provides a complete representation of the stochastic decision-making processes, (ii) models the endogenous uncertainty inherent in the project selection process and (iii) proposes a computationally practical and visually unique solution procedure for classifying desirable and undesirable R&D projects.

Details

Benchmarking: An International Journal, vol. 30 no. 10
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 19 December 2022

Amir Yaqoubi, Fatemeh Sabouhi, Ali Bozorgi-Amiri and Mohsen Sadegh Amalnick

A growing body of evidence points to the influence of location and allocation decisions on the structure of healthcare networks. The authors introduced a three-level hierarchical…

Abstract

Purpose

A growing body of evidence points to the influence of location and allocation decisions on the structure of healthcare networks. The authors introduced a three-level hierarchical facility location model to minimize travel time in the healthcare system under uncertainty.

Design/methodology/approach

Most healthcare networks are hierarchical and, as a result, the linkage between their levels makes it difficult to specify the location of the facilities. In this article, the authors present a hybrid approach according to data envelopment analysis and robust programming to design a healthcare network. In the first phase, the efficiency of each potential location is calculated based on the non-radial range-adjusted measure considering desirable and undesirable outputs based on a number of criteria such as the target area's population, proximity to earthquake faults, quality of urban life, urban decrepitude, etc. The locations deemed suitable are then used as candidate locations in the mathematical model. In the second phase, based on the proposed robust optimization model, called light robustness, the location and allocation decisions are adopted.

Findings

The developed model is evaluated using an actual-world case study in District 1 of Tehran, Iran and relevant results and different sensitivity analyses were presented as well. When the percentage of referral parameters changes, the value of the robust model's objective function increases.

Originality/value

The contributions of this article are listed as follows: Considering desirable and undesirable criteria to selecting candidate locations, providing a robust programming model for building a service network and applying the developed model to an actual-world case study.

Article
Publication date: 16 April 2024

Ali Beiki Ashkezari, Mahsa Zokaee, Erfan Rabbani, Masoud Rabbani and Amir Aghsami

Pre-positioning and distributing relief items are important parts of disaster management as it simultaneously considers activities from both pre- and post-disaster stages. This…

Abstract

Purpose

Pre-positioning and distributing relief items are important parts of disaster management as it simultaneously considers activities from both pre- and post-disaster stages. This study aims to address this problem with a novel mathematical model.

Design/methodology/approach

In this research, a bi-objective mixed-integer linear programming model is developed to tackle pre-positioning and distributing relief items, and it is formulated as an integrated location-allocation-routing problem with uncertain parameters. The humanitarian supply chain consists of relief facilities (RFs) and demand points (DPs). Perishable and imperishable relief commodities (RCs), different types of vehicles, different transportation modes, a time window for delivering perishable commodities and the occurrence of unmet demand are considered. A scenario-based game theory is applied for purchasing RCs from different suppliers and an integrated best-worst method-technique for order of preference by similarity to ideal solution technique is implemented to determine the importance of DPs. The proposed model is used to solve several random test problems for verification, and to validate the model, Iran’s flood in 2019 is investigated as a case study for which useful managerial insights are provided.

Findings

Managers can effectively adjust their preferences towards response time and total cost of the network and use sensitivity analysis results in their decisions.

Originality/value

The model locates RFs, allocates DPs to RFs in the pre-disaster stage, and determines the routing of RCs from RFs to DPs in the post-disaster stage with respect to minimizing total costs and response time of the humanitarian logistics network.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 30 December 2021

Harsh M. Shah, Bhaskar B. Gardas, Vaibhav S. Narwane and Hitansh S. Mehta

This paper aims to conduct a systematic literature review of the research in the field of Artificial Intelligence (AI) and Big Data Analytics (BDA) in Supply Chain Risk Management…

1928

Abstract

Purpose

This paper aims to conduct a systematic literature review of the research in the field of Artificial Intelligence (AI) and Big Data Analytics (BDA) in Supply Chain Risk Management (SCRM). Finally, future research directions in this field have been suggested.

Design/methodology/approach

The papers were searched using a set of keywords in the SCOPUS database. These papers were filtered using the Title abstract keywords principle. Further, more papers were found using the forward-backward referencing method. The finalized papers were then classified into eight categories.

Findings

The previous papers in AI and BDA in SCRM were studied. These papers emphasized various modelling and application techniques for AI and BDA in making the supply chain (SC) more resilient. It was found that more research has been done into conceptual modelling rather than real-life applications. It was seen that the use of AI-based techniques and structural equation modelling was prominent.

Practical implications

AI and BDA help build the risk profile, which will guide the decision-makers and risk managers make their decisions quickly and more effectively, reducing the risks on the SC and making it resilient. Other than this, they can predict the risks in disasters, epidemics and any further disruption. They also help select the suppliers and location of the various elements of the SC to reduce the lead times.

Originality/value

The paper suggests various future research directions that fellow researchers can explore. None of the previous research examined the role of BDA and AI in SCRM.

Article
Publication date: 1 February 2022

Esmail Cheraghi, Shakib Zohrehvandi, Mario Vanhoucke and Babak Mohamadpour Tosarkani

This research presents a multiproject scheduling and resource management (MPSRM) model that includes an M/M/c/n queue system, a p-hub median model, a parallel machine scheduling…

Abstract

Purpose

This research presents a multiproject scheduling and resource management (MPSRM) model that includes an M/M/c/n queue system, a p-hub median model, a parallel machine scheduling and a hub location problem solution method. This research aims to design a project network and then sequence raw materials delivery to hub factories.

Design/methodology/approach

This research is implemented as a case study in construction and industrial company. It considers several mines to supply raw materials for production in hub factories. In the sequencing phase, a parallel mine scheduling problem specifies the delivery of raw materials to hub factories. Furthermore, a multisource project scheduling model is studied and designed for building project-oriented companies.

Findings

The results suggest that the proposed MPSRM model in this study significantly reduces project transportation costs. Therefore, creating accurate planning in projects, especially in construction projects where transportation plays an important role, can help reduce time and costs. Researchers, project managers and those dealing with projects can use this model to exploit their projects.

Research limitations/implications

When the number of construction projects in a construction company increases in a region, choosing an appropriate strategy to supply resources and raw materials becomes very important in terms of profit and loss and project completion as scheduled. An increase in transportation demands alongside the economic development on the one hand and providing competitive transportation services, on the other hand, have increasingly spotlighted the significance of hub networks in transportation systems. In addition, in this research, there is no suitable access road from the mines to the project sites, and considering the workload, if any of the projects become a hub, a proper road should be built.

Originality/value

To the best of the knowledge, there is no outstanding research in which a p-hub median location problem by considering queuing model and different transportation modes and a parallel machine scheduling problem are studied simultaneously.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 February 2024

Zoubida Chorfi

As supply chain excellence matters, designing an appropriate health-care supply chain is a great consideration to the health-care providers worldwide. Therefore, the purpose of…

Abstract

Purpose

As supply chain excellence matters, designing an appropriate health-care supply chain is a great consideration to the health-care providers worldwide. Therefore, the purpose of this paper is to benchmark several potential health-care supply chains to design an efficient and effective one in the presence of mixed data.

Design/methodology/approach

To achieve this objective, this research illustrates a hybrid algorithm based on data envelopment analysis (DEA) and goal programming (GP) for designing real-world health-care supply chains with mixed data. A DEA model along with a data aggregation is suggested to evaluate the performance of several potential configurations of the health-care supply chains. As part of the proposed approach, a GP model is conducted for dimensioning the supply chains under assessment by finding the level of the original variables (inputs and outputs) that characterize these supply chains.

Findings

This paper presents an algorithm for modeling health-care supply chains exclusively designed to handle crisp and interval data simultaneously.

Research limitations/implications

The outcome of this study will assist the health-care decision-makers in comparing their supply chains against peers and dimensioning their resources to achieve a given level of productions.

Practical implications

A real application to design a real-life pharmaceutical supply chain for the public ministry of health in Morocco is given to support the usefulness of the proposed algorithm.

Originality/value

The novelty of this paper comes from the development of a hybrid approach based on DEA and GP to design an appropriate real-life health-care supply chain in the presence of mixed data. This approach definitely contributes to assist health-care decision-makers design an efficient and effective supply chain in today’s competitive word.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Abstract

Details

The Integrated Application of Effective Approaches in Supply Chain Networks
Type: Book
ISBN: 978-1-83549-631-2

Article
Publication date: 12 December 2023

Mustafa Çimen, Damla Benli, Merve İbiş Bozyel and Mehmet Soysal

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation…

Abstract

Purpose

Vehicle allocation problems (VAPs), which are frequently confronted in many transportation activities, primarily including but not limited to full truckload freight transportation operations, induce a significant economic impact. Despite the increasing academic attention to the field, literature still fails to match the needs of and opportunities in the growing industrial practices. In particular, the literature can grow upon the ideas on sustainability, Industry 4.0 and collaboration, which shape future practices not only in logistics but also in many other industries. This review has the potential to enhance and accelerate the development of relevant literature that matches the challenges confronted in industrial problems. Furthermore, this review can help to explore the existing methods, algorithms and techniques employed to address this problem, reveal directions and generate inspiration for potential improvements.

Design/methodology/approach

This study provides a literature review on VAPs, focusing on quantitative models that incorporate any of the following emerging logistics trends: sustainability, Industry 4.0 and logistics collaboration.

Findings

In the literature, sustainability interactions have been limited to environmental externalities (mostly reducing operational-level emissions) and economic considerations; however, emissions generated throughout the supply chain, other environmental externalities such as waste and product deterioration, or the level of stakeholder engagement, etc., are to be monitored in order to achieve overall climate-neutral services to the society. Moreover, even though there are many types of collaboration (such as co-opetition and vertical collaboration) and Industry 4.0 opportunities (such as sharing information and comanaging distribution operations) that could improve vehicle allocation operations, these topics have not yet received sufficient attention from researchers.

Originality/value

The scientific contribution of this study is twofold: (1) This study analyses decision models of each reviewed article in terms of decision variable, constraint and assumption sets, objectives, modeling and solving approaches, the contribution of the article and the way that any of sustainability, Industry 4.0 and collaboration aspects are incorporated into the model. (2) The authors provide a discussion on the gaps in the related literature, particularly focusing on practical opportunities and serving climate-neutrality targets, carried out under four main streams: logistics collaboration possibilities, supply chain risks, smart solutions and various other potential practices. As a result, the review provides several gaps in the literature and/or potential research ideas that can improve the literature and may provide positive industrial impacts, particularly on how logistics collaboration may be further engaged, which supply chain risks are to be incorporated into decision models, and how smart solutions can be employed to cope with uncertainty and improve the effectiveness and efficiency of operations.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 26 September 2023

Seyed Mojtaba Taghavi, Vahidreza Ghezavati, Hadi Mohammadi Bidhandi and Seyed Mohammad Javad Mirzapour Al-e-Hashem

This paper aims to minimize the mean-risk cost of sustainable and resilient supplier selection, order allocation and production scheduling (SS,OA&PS) problem under uncertainty of…

Abstract

Purpose

This paper aims to minimize the mean-risk cost of sustainable and resilient supplier selection, order allocation and production scheduling (SS,OA&PS) problem under uncertainty of disruptions. The authors use conditional value at risk (CVaR) as a risk measure in optimizing the combined objective function of the total expected value and CVaR cost. A sustainable supply chain can create significant competitive advantages for companies through social justice, human rights and environmental progress. To control disruptions, the authors applied (proactive and reactive) resilient strategies. In this study, the authors combine resilience and social responsibility issues that lead to synergy in supply chain activities.

Design/methodology/approach

The present paper proposes a risk-averse two-stage mixed-integer stochastic programming model for sustainable and resilient SS,OA&PS problem under supply disruptions. In this decision-making process, determining the primary supplier portfolio according to the minimum sustainable-resilient score establishes the first-stage decisions. The recourse or second-stage decisions are: determining the amount of order allocation and scheduling of parts by each supplier, determining the reactive risk management strategies, determining the amount of order allocation and scheduling by each of reaction strategies and determining the number of products and scheduling of products on the planning time horizon. Uncertain parameters of this study are the start time of disruption, remaining capacity rate of suppliers and lead times associated with each reactive strategy.

Findings

In this paper, several numerical examples along with different sensitivity analyses (on risk parameters, minimum sustainable-resilience score of suppliers and shortage costs) were presented to evaluate the applicability of the proposed model. The results showed that the two-stage risk-averse stochastic mixed-integer programming model for designing the SS,OA&PS problem by considering economic and social aspects and resilience strategies is an effective and flexible tool and leads to optimal decisions with the least cost. In addition, the managerial insights obtained from this study are extracted and stated in Section 4.6.

Originality/value

This work proposes a risk-averse stochastic programming approach for a new multi-product sustainable and resilient SS,OA&PS problem. The planning horizon includes three periods before the disruption, during the disruption period and the recovery period. Other contributions of this work are: selecting the main supply portfolio based on the minimum score of sustainable-resilient criteria of suppliers, allocating and scheduling suppliers orders before and after disruptions, considering the balance constraint in receiving parts and using proactive and reactive risk management strategies simultaneously. Also, the scheduling of reactive strategies in different investment modes is applied to this problem.

1 – 10 of over 1000