Search results

1 – 10 of over 6000
Article
Publication date: 13 November 2018

Xuchun Ren and Sharif Rahman

This paper aims to present a new method, named as augmented polynomial dimensional decomposition (PDD) method, for robust design optimization (RDO) and reliability-based design

Abstract

Purpose

This paper aims to present a new method, named as augmented polynomial dimensional decomposition (PDD) method, for robust design optimization (RDO) and reliability-based design optimization (RBDO) subject to mixed design variables comprising both distributional and structural design variables.

Design/methodology/approach

The method involves a new augmented PDD of a high-dimensional stochastic response for statistical moments and reliability analyses; an integration of the augmented PDD, score functions, and finite-difference approximation for calculating the sensitivities of the first two moments and the failure probability with respect to distributional and structural design variables; and standard gradient-based optimization algorithms.

Findings

New closed-form formulae are presented for the design sensitivities of moments that are simultaneously determined along with the moments. A finite-difference approximation integrated with the embedded Monte Carlo simulation of the augmented PDD is put forward for design sensitivities of the failure probability.

Originality/value

In conjunction with the multi-point, single-step design process, the new method provides an efficient means to solve a general stochastic design problem entailing mixed design variables with a large design space. Numerical results, including a three-hole bracket design, indicate that the proposed methods provide accurate and computationally efficient sensitivity estimates and optimal solutions for RDO and RBDO problems.

Article
Publication date: 13 June 2022

Firat Sal

This paper aims to offer a simultaneous design approach for helicopter having swept anhedral blade tip shape and helicopter flight control system (HFCS) to minimize controller…

Abstract

Purpose

This paper aims to offer a simultaneous design approach for helicopter having swept anhedral blade tip shape and helicopter flight control system (HFCS) to minimize controller cost.

Design/methodology/approach

By considering previously stated offer, control-oriented models and a stochastic optimization method are applied to minimize controller cost of the HFCS.

Findings

Using simultaneous design approach for helicopters having blade tip swept and blade tip anhedral causes considerably less control effort than the helicopters not benefiting this related design approach.

Practical implications

Simultaneous design approach for helicopters having blade tip swept and blade tip anhedral is applicable to consider fuel economy.

Originality/value

One important novelty of this paper is using simultaneous approach for determining optimum shape of blade tip swept and anhedral. Another considerable novelty of this paper is also using a stochastic optimization method called simultaneous perturbation stochastic approximation for previously mentioned purpose. In this paper, it is also reached that using simultaneous design approach for swept anhedral helicopter blade tip shape and HFCS causes less control effort than the helicopters not using this approach. This leads to less fuel consumption and green environment.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 July 2015

Hyeong-Uk Park, Jae-Woo Lee, Joon Chung and Kamran Behdinan

The purpose of this paper is to study the consideration of uncertainty from analysis modules for aircraft conceptual design by implementing uncertainty-based design optimization

Abstract

Purpose

The purpose of this paper is to study the consideration of uncertainty from analysis modules for aircraft conceptual design by implementing uncertainty-based design optimization methods. Reliability-Based Design Optimization (RBDO), Possibility-Based Design Optimization (PBDO) and Robust Design Optimization (RDO) methods were developed to handle uncertainties of design optimization. The RBDO method is found suitable for uncertain parameters when sufficient information is available. On the other hand, the PBDO method is proposed when uncertain parameters have insufficient information. The RDO method can apply to both cases. The RBDO, PBDO and RDO methods were considered with the Multidisciplinary Design Optimization (MDO) method to generate conservative design results when low fidelity analysis tools are used.

Design/methodology/approach

Methods combining MDO with RBDO, PBDO and RDO were developed and have been applied to a numerical analysis and an aircraft conceptual design. This research evaluates and compares the characteristics of each method in both cases.

Findings

The RBDO result can be improved when the amount of data concerning uncertain parameters is increased. Conversely, increasing information regarding uncertain parameters does not improve the PBDO result. The PBDO provides a conservative result when less information about uncertain parameters is available.

Research limitations/implications

The formulation of RDO is more complex than other methods. If the uncertainty information is increased in aircraft conceptual design case, the accuracy of RBDO will be enhanced.

Practical implications

This research increases the probability of a feasible design when it considers the uncertainty. This result gives more practical optimization results on a conceptual design level for fabrication.

Originality/value

It is RBDO, PBDO and RDO methods combined with MDO that satisfy the target probability when the uncertainties of low fidelity analysis models are considered.

Article
Publication date: 10 July 2009

Piergiorgio Alotto, Massimo Guarnieri and Federico Moro

The purpose of this paper is to optimize the performance of direct methanol fuel cells for portable applications by combining a non‐linear, fully coupled circuit model and a…

Abstract

Purpose

The purpose of this paper is to optimize the performance of direct methanol fuel cells for portable applications by combining a non‐linear, fully coupled circuit model and a stochastic optimization procedure.

Design/methodology/approach

A novel non‐linear equivalent circuit that accounts for electrochemical reactions and charge generation inside catalyst layers, electronic and protonic conduction, methanol crossover through the membrane, mass transport of reactants inside diffusion layers is presented. The discharge dynamic of the fuel cell, depending on the initial methanol concentration and on the load profile, is modelled by using the mass conservation equation. The equivalent circuit is interfaced to a stochastic optimization procedure in order to maximize the battery duration while minimizing fuel crossover.

Findings

In the proposed circuit scheme, unlike semi‐empirical models, lumped circuit parameters are derived directly from mass transport and electric equations in order to fully describe the dynamic performance of the fuel cell. Physical and geometrical parameters are optimized in order to improve the system runtime. It is shown that a combined use of fuel cells and lithium batteries can improve the runtime of portable electronic devices compared to traditional supply systems based on lithium batteries only.

Research limitations/implications

The one‐dimensional model of the micro fuel cell does not take into account possible transverse mass and electric charge flows in the fuel cell layers; most of the geometric and physics model parameters cannot be estimated from direct in situ or ex situ measurements.

Practical implications

Direct methanol fuel cells are nowadays a promising technology for replacing or complementing lithium batteries due to their high energy density. Most limiting features of direct methanol fuel cells are the fuel crossover and its slow oxidation kinetics. By using the proposed approach, fuel cell parameters can be optimized in order to enhance the discharge runtime and to reduce the methanol crossover.

Originality/value

The equivalent circuit model with optimized lumped non‐linear parameters can be used when designing power management units for portable electronic devices.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 November 2013

Pietro Marco Congedo, Gianluca Geraci, Rémi Abgrall, Valentino Pediroda and Lucia Parussini

– This paper aims to deal with an efficient strategy for robust optimization when a large number of uncertainties are taken into account.

Abstract

Purpose

This paper aims to deal with an efficient strategy for robust optimization when a large number of uncertainties are taken into account.

Design/methodology/approach

ANOVA analysis is used in order to perform a variance-based decomposition and to reduce stochastic dimension based on an appropriate criterion. A massive use of metamodels allows reconstructing response surfaces for sensitivity indexes in the design variables plan. To validate the proposed approach, a simplified configuration, an inverse problem on a 1D nozzle flow, is solved and the performances compared to an exact Monte Carlo reference solution. Then, the same approach is applied to the robust optimization of a turbine cascade for thermodynamically complex flows.

Findings

First, when the stochastic dimension is reduced, the error on the variance between the reduced and the complete problem was found to be roughly estimated by the quantity (1− TSI )×100, where TSI is the summation of TSI concerning the variables respecting the TSI criterion. Second, the proposed strategy allowed obtaining a converged Pareto front with a strong reduction of computational cost by preserving the same accuracy.

Originality/value

Several articles exist in literature concerning robust optimization but very few dealing with a global approach for solving optimization problem affected by a large number of uncertainties. Here, a practical and efficient approach is proposed that could be applied also to realistic problems in engineering field.

Details

Engineering Computations, vol. 30 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 October 2012

I. Doltsinis

The purpose of this paper is to expose computational methods as applied to engineering systems and evolutionary processes with randomness in external actions and inherent…

Abstract

Purpose

The purpose of this paper is to expose computational methods as applied to engineering systems and evolutionary processes with randomness in external actions and inherent parameters.

Design/methodology/approach

In total, two approaches are distinguished that rely on solvers from deterministic algorithms. Probabilistic analysis is referred to as the approximation of the response by a Taylor series expansion about the mean input. Alternatively, stochastic simulation implies random sampling of the input and statistical evaluation of the output.

Findings

Beyond the characterization of random response, methods of reliability assessment are discussed. Concepts of design improvement are presented. Optimization for robustness diminishes the sensitivity of the system to fluctuating parameters.

Practical implications

Deterministic algorithms available for the primary problem are utilized for stochastic analysis by statistical Monte Carlo sampling. The computational effort for the repeated solution of the primary problem depends on the variability of the system and is usually high. Alternatively, the analytic Taylor series expansion requires extension of the primary solver to the computation of derivatives of the response with respect to the random input. The method is restricted to the computation of output mean values and variances/covariances, with the effort determined by the amount of the random input. The results of the two methods are comparable within the domain of applicability.

Originality/value

The present account addresses the main issues related to the presence of randomness in engineering systems and processes. They comprise the analysis of stochastic systems, reliability, design improvement, optimization and robustness against randomness of the data. The analytical Taylor approach is contrasted to the statistical Monte Carlo sampling throughout. In both cases, algorithms known from the primary, deterministic problem are the starting point of stochastic treatment. The reader benefits from the comprehensive presentation of the matter in a concise manner.

Article
Publication date: 1 June 2000

P.Di Barba

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed…

Abstract

Introduces papers from this area of expertise from the ISEF 1999 Proceedings. States the goal herein is one of identifying devices or systems able to provide prescribed performance. Notes that 18 papers from the Symposium are grouped in the area of automated optimal design. Describes the main challenges that condition computational electromagnetism’s future development. Concludes by itemizing the range of applications from small activators to optimization of induction heating systems in this third chapter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 April 2018

Zefeng Xiao, Yongqiang Yang, Di Wang, Changhui Song and Yuchao Bai

This paper aims to summarize design rules based on the process characteristics of selective laser melting (SLM) and structural optimization and apply the design rules in the…

Abstract

Purpose

This paper aims to summarize design rules based on the process characteristics of selective laser melting (SLM) and structural optimization and apply the design rules in the lightweight design of an aluminum alloy antenna bracket. The design goal is to reduce 30 per cent of the weight while maintaining the stress levels in the original part.

Design/methodology/approach

To reduce weight as much as possible, the titanium alloy with higher specific strength was selected during the process of optimization. The material distribution of the bracket was improved by the topology optimization design. The redesign for SLM was used to obtain an optimization model, which was more suitable for SLM. The component performance was improved by shape optimization. The modal analysis data of the structural optimization model were compared with those of the stochastic lightweight model to verify the structural optimization model. The scanning data were compared with those of the original model to verify whether the model was suitable for SLM.

Findings

Structural optimization design for antenna bracket realized the mass decrease of 30.43 per cent and the fundamental frequency increase of 50.18 per cent. The modal analysis data of the stochastic lightweight model and the structural optimization model indicated that the optimization performance of structural optimization method was better than that of the stochastic lightweight method. The comparison results between the scanning data of the forming part and the original data confirmed that the structural optimization design for SLM lightweight component could achieve the desired forming accuracy.

Originality/value

This paper summarizes geometric constraints in SLM and derives design rules of structural optimization based on the process characteristics of SLM. SLM design rules make structural optimization design more reasonable. The combination of structural optimization design and SLM can improve the performance of lightweight antenna bracket significantly.

Details

Rapid Prototyping Journal, vol. 24 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 September 2023

Kemal Subulan and Adil Baykasoğlu

The purpose of this study is to develop a holistic optimization model for an integrated sustainable fleet planning and closed-loop supply chain (CLSC) network design problem under…

Abstract

Purpose

The purpose of this study is to develop a holistic optimization model for an integrated sustainable fleet planning and closed-loop supply chain (CLSC) network design problem under uncertainty.

Design/methodology/approach

A novel mixed-integer programming model that is able to consider interactions between vehicle fleet planning and CLSC network design problems is first developed. Uncertainties of the product demand and return fractions of the end-of-life products are handled by a chance-constrained stochastic program. Several Pareto optimal solutions are generated for the conflicting sustainability objectives via compromise and fuzzy goal programming (FGP) approaches.

Findings

The proposed model is tested on a real-life lead/acid battery recovery system. By using the proposed model, sustainable fleet plans that provide a smaller fleet size, fewer empty vehicle repositions, minimal CO2 emissions, maximal vehicle safety ratings and minimal injury/illness incidence rate of transport accidents are generated. Furthermore, an environmentally and socially conscious CLSC network with maximal job creation in the less developed regions, minimal lost days resulting from the work's damages during manufacturing/recycling operations and maximal collection/recovery of end-of-life products is also designed.

Originality/value

Unlike the classical network design models, vehicle fleet planning decisions such as fleet sizing/composition, fleet assignment, vehicle inventory control, empty repositioning, etc. are also considered while designing a sustainable CLSC network. In addition to sustainability indicators in the network design, sustainability factors in fleet management are also handled. To the best of the authors' knowledge, there is no similar paper in the literature that proposes such a holistic optimization model for integrated sustainable fleet planning and CLSC network design.

Article
Publication date: 22 November 2011

Haydn I. Furlonge

The liquefied natural gas (LNG) business comprises a number of economic activities with inherent risks. The purpose of this paper is to propose an integrated modelling approach…

Abstract

Purpose

The liquefied natural gas (LNG) business comprises a number of economic activities with inherent risks. The purpose of this paper is to propose an integrated modelling approach, as part of the investment decision‐making process, for optimising economic returns from LNG whilst taking into account uncertainty in various key input parameters.

Design/methodology/approach

Inter‐linked cash flow and pricing models of the LNG chain were constructed. Net present value was maximised based on selection of netback pricing variables and level of investment shareholding. Constraints were placed on the minimum acceptable returns. The risk affinity of the decision maker was captured in the form of a chance‐constrained optimisation problem. A genetic algorithm was applied for numerical optimisation, in combination with Monte Carlo simulations to account for the stochastic nature of the problem.

Findings

Based on the results of a case study, the deterministic solution, having no consideration to uncertainty, was found to be both sub‐optimal and provided an unsatisfactory risk outcome. The stochastic approach yielded an optimal solution with due consideration to risk. Various scenarios show that the choice of the decision variables significantly impacts the trade‐off between risk and returns along the LNG chain to government and investor.

Research limitations/implications

The suitability of the methodology to the operational phase of the LNG business which incorporates different elements of risk, such as market dynamics and logistics, is as yet untested.

Originality/value

This framework may be useful in the formulation of optimal commercial structure of firms, investment portfolio and gas/LNG pricing arrangements for host governments involved in the LNG business.

Details

International Journal of Energy Sector Management, vol. 5 no. 4
Type: Research Article
ISSN: 1750-6220

Keywords

1 – 10 of over 6000