Search results

1 – 10 of 201
Article
Publication date: 14 June 2011

Hae Jin Gam, Huantian Cao, Jaclyn Bennett, Caroline Helmkamp and Cheryl Farr

Combining of natural and synthetic materials in apparel products caused problems with material recovery, reuse, recycling, or composting at the end of product life. The purpose of…

2122

Abstract

Purpose

Combining of natural and synthetic materials in apparel products caused problems with material recovery, reuse, recycling, or composting at the end of product life. The purpose of this paper is to investigate the application of design for disassembly methods in the design and construction of men's jacket. With this type of design, consumers and manufacturers can easily compost, recycle, or reuse different materials and components at the end of the garment's usable life.

Design/methodology/approach

After analyzing the men's jackets available in the market and identifying obstacles to disassembly, the authors designed and constructed a man's jacket that can be easily disassembled. The jacket design for disassembly focused on material selection, jacket design, and stitch evaluation and selection. The disassembly time was also measured.

Findings

It was found that minimizing material diversity and sewing similar materials together whenever possible, replacing fusible interfacing with blind hemming stitches under the collar and on the backside of the lapel, and using an appropriate low density stitch to sew the wool outer shell and polyester lining together, can make the jacket disassemble easily into a compostable outer shell and recyclable lining within 1.5 min.

Originality/value

This research provided a pilot study demonstration of applying “design for disassembly” in apparel design and construction. The findings could be employed in different apparel products to help reduce environmental pollution and resource depletion problems related to the apparel industry.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 August 2017

D. Vijay Kirubakar Raj and M. Renuka Devi

The purpose of this paper is to make available to the parachute industry tools to predict behaviour of certain textile materials. In addition to this, it is desired to reveal and…

Abstract

Purpose

The purpose of this paper is to make available to the parachute industry tools to predict behaviour of certain textile materials. In addition to this, it is desired to reveal and explain the basic requirement criteria for proper textile material selection. The strength of an assembly as a whole is directly dependent on the strengths of the various joints and seams required to assemble the larger structure. Keeping in mind the complex problem of parachute construction, this research seeks to enlighten the industry about the performance of seams in nylon woven canopy fabrics. Five factors have been studied: different types of weave (plain, rip-stop and twill), density (number of stitches per centimetre), different rows of stitches with lapped seams, different types of stitches (lock stitch, chain stitch and zig-zag) and seam direction (warp, weft and bias direction). Two responses have been analysed, the seam breaking force and the seam efficiency (per cent ratio of seam strength to fabric strength). The test results were subjected to an analysis of variance and the seam strength proved to vary significantly not only with the primary parameters, but with the interactions of the primary parameters as well. That is seam strength (and seam efficiency) changes with each primary parameter but it changes in a different manner when other parameters change. Multiple regressions have been used to construct preliminary predictor equations for seam strength and efficiency, and investigations to provide better equations are in progress.

Design/methodology/approach

ANOVA techniques and statistical regression equations were formed.

Findings

The work has concluded that twill weave 9 with chain stitch has the maximum seam strength, which makes canopies made with 2/1 twill weave and stitched with lapped seam with four rows of chain stitch optimum for heavy supply droppings with a single use parachute(s). It is evident from the results that twill weave with lock stich has the maximum seam efficiency. This makes the canopies stitched with twill fabric, constructed with lapped seams and four rows of stitches ideal for parachutes to be used multiple times. The brake parachutes on aircrafts and parachutes used by sky divers and air combat soldiers can use parachutes whose canopies can be used many times made out of the above mentioned weave and stitch specification.

Originality/value

Original work was conducted from the woven fabrics.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 December 2017

Mallika Datta, Devarun Nath, Asif Javed and Nabab Hossain

The focus of this research is to identify the optimum commercial grade sewing thread and stitch density to be used with woven linen shirting fabric used in making men’s formal…

Abstract

Purpose

The focus of this research is to identify the optimum commercial grade sewing thread and stitch density to be used with woven linen shirting fabric used in making men’s formal shirt. Maximum seam efficiency and interaction between the process parameters were assessed.

Design/methodology/approach

The classical method of optimisation involves varying one variable at a time and keeping the others constant. This is often useful, but it does not explain the effect of interaction between the variables under consideration. In this study, the response surface methodology was used for securing a more accurate optimisation of seam quality (seam efficiency) of woven linen shirting fabric. The response surface method is an empirical statistical technique used for multiple regression analysis of quantitative data obtained from statistically designed experiments by solving the multivariate equations simultaneously. Through this system, the input level of each process parameter, i.e. variable and the level of the selected response (seam efficiency), can be quantified. The central composite, Box–Behnken, is the common design used here.

Findings

The maximum seam efficiency is 79.62 per cent and 83.13 per cent in warp and weft direction, respectively, with optimum areal density (G) of 110 g/m2 of woven linen shirting fabric. The most suitable stitch density and ticket number of commercial grade sewing thread for woven linen shirting fabric are 13-13.5 and 40, respectively.

Practical implications

This study could help apparel manufacturers to evaluate seam quality, i.e. seam efficiency of woven linen fabric for men’s shirting, more effectively from the proposed regression model. The optimisation of the commercial grade sewing thread size and stitch density used in this study for woven linen shirting fabric within the range of 110-150 g/m2 will facilitate apparel engineers in production planning and quality control.

Originality/value

There is dearth of research on seam quality for woven linen shirting fabric using commercial grade sewing thread and engineering of prediction regression model for the estimation of seam efficiency by using process parameters, namely, fabric G, thread size and thread density and their interaction.

Details

Research Journal of Textile and Apparel, vol. 21 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 3 June 2014

Adnan Mazari and Antonin Havelka

In this article the sewing needle heat is measured without sewing thread and with sewing thread at different stitch density (stitches per inch or SPI) of lock stitch sewing…

Abstract

In this article the sewing needle heat is measured without sewing thread and with sewing thread at different stitch density (stitches per inch or SPI) of lock stitch sewing machine by thermocouples. Two methods are used to measure sewing needle heat, touch thermocouple method and inserted thermo couple method. Needle temperature is measured after periodic 10, 20, 30 and 60 seconds of sewing operation. Whereas the machine running at speed from 1000 r/m to 4700 r/m. It is observed that decreasing stitch length causes an increase in the temperature of the sewing needle. Stitch density shows same influence on needle for sewing with thread and without thread. It is observed from our research that at SPI of 14 the needle temperature with thread rises to 259 °C at 4000 r/min of machine. It is recommended to use minimum stitch density.

Details

World Journal of Engineering, vol. 11 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 May 2018

Awadhesh Kumar Choudhary, Monica Puri Sikka and Payal Bansal

The purpose of this review paper is to define the dominating factors (such as fiber, yarn, fabric structure, sewing thread, sewing needle and machine parameters) that affect the…

Abstract

Purpose

The purpose of this review paper is to define the dominating factors (such as fiber, yarn, fabric structure, sewing thread, sewing needle and machine parameters) that affect the seam damages and causing defects. It also describes the various explanations of sewing defects in garment production and critically analyzes them for optimum selection of parameters and speeds for minimizing such faults. Hence, the knowledge of various factors which affect the sewing damages/defects will be helpful for garment manufacturers/researchers to know influence of the parameters and control the quality of producing seam.

Design/methodology/approach

This section is not applicable for a review paper.

Findings

Sewing damages such as needle cut and other sewing damages/defects are studied mostly in woven fabric. There are very few studies conducted on knitted fabric sewing damages/defects. The sewing damage problems do not have single solution that is capable of removing these damages in fabric. All the determined and affecting parameters related to fiber, yarn, fabric construction, sewing thread and sewing machine must be examined to design appropriate remedial measurement related to machine design, fabric parameters and sewing thread. This could help in minimizing or eliminating the needle cut and other sewing damage problems.

Originality/value

It is an original review work and is helpful for garment manufacturers/researchers to reduce the defects and be able to produce good quality seam.

Details

Research Journal of Textile and Apparel, vol. 22 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 December 2018

Muhammad Babar Ramzan, Abher Rasheed, Zulfiqar Ali, Sheraz Ahmad, Muhammad Salman Naeem and Ali Afzal

In the field of knitwear, dimensional stability is assumed as a critical problem that affects the quality and salability of a product. Although much work has been done in this…

Abstract

Purpose

In the field of knitwear, dimensional stability is assumed as a critical problem that affects the quality and salability of a product. Although much work has been done in this area with a focus on the factors affecting fabric shrinkage, however, there is a lack of work on knitwears with respect to their dimensional stability. The purpose of this paper is to investigate the impact of stitching parameters and wash types on the dimensional properties of knitwear.

Design/methodology/approach

The crew-neck t-shirts were prepared by using pique knitted fabrics. Different sewing and finishing parameters were used that include stitch density, stitch type, stitching thread and wash type. The critical measurements of the selected garment are taken as output variables which are body width, sleeve length, body length and across shoulder. After laundering process, shrinkage percentage was calculated by using before-wash and after-wash measurements.

Findings

This study shows that the stitching parameters affect significantly on knitwear’s shrinkage. Thus, when patterns are being developed for the cutting of fabric, expected shrinkage, known as residual shrinkage, must be considered to avoid unexpected changes in garment shape.

Originality/value

This research will be useful for knitwear manufacturing industry.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 October 2023

Samridhi Garg, Vinay Kumar Midha and Monica Sikka

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Abstract

Purpose

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Design/methodology/approach

Water may not accurately reflect perspiration when testing multi-layered clothes for thermal comfort in wet state. Most researchers used water or sodium chloride (NaCl) to measure wet state thermal comfort. However, human perspiration is an extremely complex mixture of aqueous chemicals, including minerals, salts, lipids, urea and lactic acid. This study compares the effects of simulated sweat solution to distilled water on the thermal behaviour of a multi-layered fabric assembly with different seam patterns.

Findings

Experiment results show that stitching decreases thermal resistance and thermal conductivity. Seam pattern of 10 cm diagonal spacing is more thermally resistant than 2.5 cm diagonal spacing. In comparison to that of simulated sweat, fabric that has been moistened with distilled water exhibits increased thermal conductivity. Hollow polyester wadding or micro polyester wadding as the intermediate layer exhibits greater thermal resistance than multi-layered construction with spacer fabric as middle layer.

Originality/value

This study considers human perspiration while designing protective clothing for wet thermal comfort.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 October 2021

Esra Zeynep Yıldız and Oktay Pamuk

The conversion of fabric into a garment involves many interactions such as the selection of suitable sewing thread, optimization of sewing parameters, ease of conversion of fabric…

Abstract

Purpose

The conversion of fabric into a garment involves many interactions such as the selection of suitable sewing thread, optimization of sewing parameters, ease of conversion of fabric into the garment and actual performance of the sewn fabric during wear of the garment. The adjustment of all sewing parameters is necessary to ensure quality. The purpose of this paper is to define the parameters that affect seam quality comprehensively.

Design/methodology/approach

This study primarily focuses on the studies dealing with the effect of various parameters on-seam quality in detail. A systematic literature review was conducted.

Findings

The interactions between parameters may lead to different results than the effect of a single parameter. In addition, changing some parameters may have a positive effect on one element of seam quality while having a negative effect on another. For this reason, it is very important to properly select the parameters according to the specific end use of the garment products and also to consider the interactions.

Originality/value

The knowledge of various factors that affect seam quality will be helpful for manufacturers to improve production performance and to be able to produce high-quality seam.

Details

Research Journal of Textile and Apparel, vol. 25 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 September 1956

ACCORDING to a leading London evening paper, outside “efficiency experts” are parasites. In an Evening News leading article these words appear:

Abstract

ACCORDING to a leading London evening paper, outside “efficiency experts” are parasites. In an Evening News leading article these words appear:

Details

Work Study, vol. 5 no. 9
Type: Research Article
ISSN: 0043-8022

Article
Publication date: 24 May 2018

Madan Lal Regar, Sujit Kumar Sinha and Bhavna Choubisa

Sewing thread plays an important role in transforming a two-dimensional fabric into three-dimensional garment. Over the years, ring spinning has been dominating the yarn market…

Abstract

Purpose

Sewing thread plays an important role in transforming a two-dimensional fabric into three-dimensional garment. Over the years, ring spinning has been dominating the yarn market because of its consistent performance. Eli-Twist spinning system, a new method of yarn manufacture, provides a product with improved mechanical and physical properties than the conventional ring-spun yarn. It is the process of producing a two-ply compact yarn with improved fibre utilisation. The purpose of this paper is to assess the feasibility of using Eli-Twist yarn as a sewing thread and to compare its performance with conventional thread.

Design/methodology/approach

In this study, regular polyester and Indian cotton were used to produce the Eli-Twist and conventional TFO thread. Three different blends (100 per cent polyester, 50/50 polyester/cotton [P/C] and 100 per cent cotton) were taken to produce three different counts (39.4 tex, 29.5 tex and 23.6 tex) from each composition. The hairiness, tenacity, breaking elongation and coefficient of yarn-to-metal friction of threads were tested and a comparative analysis was made. The seam performance of all the threads was judged by seam strength, seam efficiency and seam elongation.

Findings

The results show that the mass irregularity and imperfections are more or less similar for both types of threads. Eli-Twist sewing thread has shown less friction, less hairiness and higher tensile strength. The Eli-Twist sewing thread was found to be better than the conventional two-ply sewing thread. The seam performance parameters, such as seam strength, seam efficiency and seam elongation of the Eli-Twist thread showed significantly improved performance.

Originality/value

The main concern of this study is delineating the performance of the Eli-Twist sewing thread. No study in this regard has been reported so far. The improved physical and mechanical behaviour of the Eli-Twist yarn has prompted to assess its performance as sewing thread.

Details

Research Journal of Textile and Apparel, vol. 22 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 201