Search results

1 – 10 of over 3000
Article
Publication date: 21 September 2020

Guangxin Wang, Lili Zhu and Peng Wang

The purpose of this paper is to obtain the single-tooth stiffness, single-tooth time-varying meshing stiffness and comprehensive meshing stiffness of the internal and external…

Abstract

Purpose

The purpose of this paper is to obtain the single-tooth stiffness, single-tooth time-varying meshing stiffness and comprehensive meshing stiffness of the internal and external face gears and to analyze the influence of the modulus, pressure angle and tooth width of each face gear on the single-tooth stiffness of the gear in nutation face gear transmission.

Design/methodology/approach

From the point of view of material mechanics, the gear teeth of nutation face gear are simplified as spacial variable cross-section beams. The shear deformation of gear teeth, the bending deformation of tooth root and the additional elastic deformation caused by the base deformation are gotten by simplified trapezoidal section method, thus the stiffness of nutation face gear teeth can be obtained. The comparison with finite element method results verifies the rationality of simplified trapezoidal section method for calculating the tooth stiffness of nutation face gear.

Findings

The variation of stiffness of internal and external face gears along the meshing line and tooth height in nutation face gear transmission is studied, and the variation laws of single tooth stiffness, single-tooth-pair mesh stiffness and single tooth time-varying meshing stiffness of nutation face gear teeth are obtained.

Originality/value

Nutation face gear transmission is a new type of transmission. The stiffness of face gear teeth is analyzed, and the variation rules of single tooth stiffness, single-tooth-pair mesh stiffness and single tooth time-varying meshing stiffness of nutation face gear teeth are obtained, which not only enriches the research of nutation face gear transmission but also has important guiding significance for the application of nutation face gear in engineering practice.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 July 2023

Lei Li and Siqi An

This paper aims to investigate analytical solutions of natural frequencies and mode shapes of Euler-Bernoulli beams with step changes in the stiffness.

Abstract

Purpose

This paper aims to investigate analytical solutions of natural frequencies and mode shapes of Euler-Bernoulli beams with step changes in the stiffness.

Design/methodology/approach

In this work, analytical solutions for a beam with a single discontinuity was performed. Subsequently, based on an effective matrix formulation, the closed-form expressions of the single discontinuity beam could be conveniently extended to stepped beams with multiple stiffness discontinuities.

Findings

The results of the study show that the natural frequency of the beam can be adjusted by the local stiffness variation, and step location plays a significant role in free vibration responses.

Originality/value

The effects of the stiffness of the segment and step location on the natural frequencies of the stepped beams under different boundary conditions were examined using the proposed analytical scheme. This study provides insights into the design of variable-stiffness beam structures with the capability to adjust natural frequencies.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 March 2017

Yong Zhao, Jue Yu, Hao Wang, Genliang Chen and Xinmin Lai

This paper aims to propose an electromagnetic prismatic joint with variable stiffness. The joint can absorb the sudden shocks and improve the natural dynamics of robotics. The…

Abstract

Purpose

This paper aims to propose an electromagnetic prismatic joint with variable stiffness. The joint can absorb the sudden shocks and improve the natural dynamics of robotics. The ability of regulating the output stiffness can also be used for force control in industrial applications.

Design/methodology/approach

Unlike some existing designs of variable stiffness joints (VSJs) in which the stiffness regulation is implemented using the stiffness adjustment motor and mechanisms, the main structure of the electromagnetic VSJ is a permanent magnet (PM) arranged inside coaxial cylinder coils. The adjustment of input current can cause the change of magnetic force between the PM and the cylinder coils, and thus leads to the variation of output stiffness.

Findings

According to the theoretical model, the output stiffness of the electromagnetic VSJ is linearly proportional to the input current. The experiments further indicate that the current-controlled stiffness can make the stiffness variation response of this VSJ more rapid for practical applications. Due to the large damping introduced by the copper-based self-lubrication bearings, the VSJ shows good properties in motion positioning and trajectory tracking.

Originality/value

In summary, the electromagnetic VSJ is compact in size and light in weight. It is possible to realize the online adaptability to work conditions with dynamic load by using this VSJ.

Details

Industrial Robot: An International Journal, vol. 44 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 February 2001

K. Dems and Z. Mróz

Damage of a structure affects its stiffness properties and induces a shift in the free frequency spectrum. In the paper, an additional parameter is introduced, such as…

Abstract

Damage of a structure affects its stiffness properties and induces a shift in the free frequency spectrum. In the paper, an additional parameter is introduced, such as concentrated elastic or rigid support and mass. The evolution of natural frequencies is analyzed for varying parameter values with respect to damage location. This frequency variation is used in assessing the location and magnitude of damage by introducing the damage indices or by solving the identification problem requiring the minimization of the parameter dependent distance functional. The first part of the paper is concerned with the sensitivity analysis of damage indices with respect to support or mass location. The second part deals with the identification problem for which the specific examples are treated.

Details

Engineering Computations, vol. 18 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 June 2015

Yong Tao, Tianmiao Wang, Yunqing Wang, Long Guo, Hegen Xiong and Dong Xu

This study aims to propose a new variable stiffness robot joint (VSR-joint) for operating safely. More and more variable stiffness actuators are being designed and implemented…

Abstract

Purpose

This study aims to propose a new variable stiffness robot joint (VSR-joint) for operating safely. More and more variable stiffness actuators are being designed and implemented because of their ability to minimize large forces due to shocks, to safely interact with the user and their ability to store and release energy in passive elastic elements.

Design/methodology/approach

The design of VSR-joint is compact and integrated highly and the operating is simply. The mechanics, the principle of operation and the model of the VSR-joint are proposed. The principle of operation of VSR-joint is based on a lever arm mechanism with a continuously regulated pivot point. The VSR-joint features a highly dynamic stiffness adjustment along with a mechanically programmable system behavior. This allows an easy adaption to a big variety of tasks.

Findings

Preliminary results are presented to demonstrate the fast stiffness regulation response and the wide range of stiffness achieved by the proposed VSR-joint design.

Originality/value

In this paper, a new variable stiffness joint is proposed through changing the cantilever arm to change the performance of the elastic element, which is compact, small size and simple adjustment.

Details

Industrial Robot: An International Journal, vol. 42 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 September 2014

S.C. Mohan, Amit Yadav, Dipak Kumar Maiti and Damodar Maity

The early detection of cracks, corrosion and structural failure in aging structures is one of the major challenges in the civil, mechanical and aircraft industries. Common…

Abstract

Purpose

The early detection of cracks, corrosion and structural failure in aging structures is one of the major challenges in the civil, mechanical and aircraft industries. Common inspection techniques are time consuming and hence can have strong economic implications due to downtime. The paper aims to discuss these issues.

Design/methodology/approach

As a result, during the past decade a number of methodologies have been proposed for detecting crack in structure based on variations in the structure's dynamic characteristics. This work showcases the efficacy of particle swarm optimization (PSO) and genetic algorithm (GA) in damage assessment of structures.

Findings

Efficiency of these tools has been tested on structures like beam, plane and space truss. The results show the effectiveness of PSO in crack identification and the possibility of implementing it in a real-time structural health monitoring system for aircraft and civil structures.

Originality/value

The methodology presented establishes the PSO as robust and competent tool over GA for crack identification using changes in natural frequencies.

Article
Publication date: 28 November 2023

Aboubakeur Benariba, Ahmed Bouzidane, Hicham Aboshighiba and Mark Thomas

The purpose of this research is to study the dynamic behavior of hydrostatic squeeze film dampers made of four hydrostatic pads, fed through four capillary restrictors with…

Abstract

Purpose

The purpose of this research is to study the dynamic behavior of hydrostatic squeeze film dampers made of four hydrostatic pads, fed through four capillary restrictors with micropolar lubricant.

Design/methodology/approach

The modified version of Reynolds equation is solved numerically by the finite differences and the Gauss–Seidel methods to determine the pressure field generated on the hydrostatic bearing flat pads. In the first step, the effects of the pad dimension ratios on the stiffness and damping coefficients are investigated. In the second step, the damping factor is evaluated with respect to the micropolar properties.

Findings

The analysis revealed that the hydrostatic squeeze film dampers lubricated with micropolar lubricants produces the maximum damping factor for characteristic length of micropolar lubricant less than 5, while the same bearing operating with Newtonian lubricants reaches its maximum damping factor at eccentricity ratios larger than 0.4.

Originality/value

The results obtained show that the effects of micropolar lubricants on the dynamic performances are predominantly affected by the pad geometry and eccentricity ratio.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 June 2019

Gangling Hou, Meng Li, Sun Hai, Tianshu Song, Lingshu Wu, Yong Li, Gang Zheng, Feng Shen and Yaodong Chen

Seismic isolation, as an effective risk mitigation strategy of building/bridge structures, is incorporated into AP1000 nuclear power plants (NPPs) to alleviate the seismic damage…

Abstract

Purpose

Seismic isolation, as an effective risk mitigation strategy of building/bridge structures, is incorporated into AP1000 nuclear power plants (NPPs) to alleviate the seismic damage that may occur to traditional structures of NPPs during their service. This is to promote the passive safety concept in the structural design of AP1000 NPPs against earthquakes.

Design/methodology/approach

In conjunction with seismic isolation, tuned-mass-damping (TMD) is integrated into the seismic resistance system of AP1000 NPPs to satisfy the multi-functional purposes. The proposed base-isolation-tuned-mass-damper (BIS-TMD) is studied by comparing the seismic performance of NPPs with four different design configurations (i.e. without BIS, BIS, BIS-TMD and TMD) with the design parameters of the TMD subsystem optimized.

Findings

Such a new seismic protection system (BIS-TMD) is proved to be promising because the advantages of BIS and TMD can be fully used. The benefits of the new structure include effective energy dissipation (i.e. wide vibration absorption band and a stable damping effect), which results in the high performance of NPPs subject to earthquakes with various intensity levels and spectra features.

Originality/value

Parametric studies are performed to demonstrate the seismic robustness (e.g. consistent performance against the changing mass of the water in the gravity liquid tank and mechanical properties) which further ensures that seismic safety requirements of NPPs can be satisfied through the use of BIS-TMD.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 September 2016

Rajneesh Kumar and Suresh Verma

In the present scenario of high-speed machines, the use of non-circular hole-entry bearing configuration, i.e. two-lobe, multi-lobe, lemon bore, etc., has becomes unavoidable, as…

Abstract

Purpose

In the present scenario of high-speed machines, the use of non-circular hole-entry bearing configuration, i.e. two-lobe, multi-lobe, lemon bore, etc., has becomes unavoidable, as the journal bearings with non-circular configurations provide better stability at high operating speed and heavy dynamic loading. Further, this research aims to show that the presence of micro particles in the lubricants greatly affects performance of the bearings, as their presence leads to non-Newtonian behaviors of the lubricant. Therefore, to consider the effect of these micro particles, the lubricant is modeled as a micropolar lubricant. The present work analyzes the effect of these micropolar lubricants on the performance of hole-entry circular and non-circular (two-lobe) hybrid journal bearings compensated with constant flow valve restrictor and compares with that of Newtonian lubricants.

Design/methodology/approach

The modified Reynolds equation governing the laminar flow of iso-viscous, incompressible micropolar lubricant in the clearance space of a journal bearing system has been solved using finite element method and appropriate boundary conditions. Further, a comparative analysis between circular and non-circular (two-lobe) hybrid journal bearing compensated with constant flow valve restrictor operating with Newtonian and micropolar lubricant has been presented.

Findings

The numerically simulated results reveal that the non-circular bearing configuration provides better performance vis-à-vis the circular bearing configuration. Further, the increase in the micropolar effect of the lubricant enhances the performance of circular and the non-circular bearing configurations compared with the Newtonian lubricant. Also, in the case of the non-circular bearing configuration with an offset factor (δ = 1.5), the bearing performance improved compared with (δ = 1.25).

Originality/value

Many research studies have been done in the area of non-circular hybrid journal bearing with Newtonian lubricants with different types of restrictors, but the non-circular hole-entry constant flow valve-compensated hybrid journal bearing operating with the micropolar lubricant has not been analyzed. Therefore, in the present work, an effort has been made to fill this research gap.

Details

Industrial Lubrication and Tribology, vol. 68 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 November 1958

W.G. Molyneux

An outline is given of the uses of flutter models as an aid to the designer in the avoidance of flutter. Details are given of the different types and methods of construction that…

37

Abstract

An outline is given of the uses of flutter models as an aid to the designer in the avoidance of flutter. Details are given of the different types and methods of construction that are used for flutter models and of the various test facilities that are available for high speed and low speed tests. The procedure followed in the U.K. for flutter clearance of the full scale aircraft is described, and the value of the electronic flutter simulator in this field is discussed.

Details

Aircraft Engineering and Aerospace Technology, vol. 30 no. 11
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 3000