Search results

1 – 10 of 12
Article
Publication date: 5 April 2024

Ather Azim Khan, Muhammad Ramzan, Shafaqat Mehmood and Wing-Keung Wong

This paper assesses the environment of legitimacy by determining the role of institutional quality and policy uncertainty on the performance of five major South Asian stock…

Abstract

Purpose

This paper assesses the environment of legitimacy by determining the role of institutional quality and policy uncertainty on the performance of five major South Asian stock markets (India, Pakistan, Bangladesh, Sri Lanka, and Nepal) using 21 years data from 2000 to 2020. The focus of this study is to approach the issue of the environment of legitimacy that leads to sustained market returns.

Design/methodology/approach

Panel cointegration tests of Kao and Pedroni are applied, and the Dynamic Panel Vector Autoregressive (PVAR) model is used to determine the estimates.

Findings

ADF P-Values of both Kao and Pedroni tests show that the panels are cointegrated; the statistical significance of the results of the Kao and Pedroni panel cointegration test confirms cointegration among the variables. After determining the most appropriate lag, the analysis is done using PVAR. The results indicate that institutional quality, policy uncertainty, and GDP positively affect stock market return. Meanwhile, government actions and inflation negatively affect stock market returns. On the other hand, stock market return positively affects institutional quality, government action, policy uncertainty, and GDP. While stock market return negatively affects inflation.

Research limitations/implications

The sample is taken only from a limited number of South Asian countries, and the period is also limited to 21 years.

Practical implications

Based on our research findings, we have identified several policy implications recommended to enhance and sustain the performance of stock markets.

Originality/value

This paper uses a unique analytical tool, which gives a better insight into the problem. The value of this work lies in its findings, which also have practical implications and theoretical significance.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 10 January 2024

Tingwei Gu, Shengjun Yuan, Lin Gu, Xiaodong Sun, Yanping Zeng and Lu Wang

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic…

Abstract

Purpose

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic errors when measuring dynamic signals.

Design/methodology/approach

The dynamic characteristics of the force sensor are analyzed by modal analysis and negative step dynamic force calibration test, and the dynamic mathematical model of the force sensor is identified based on a generalized least squares method with a special whitening filter. Then, a compensation unit is constructed to compensate the dynamic characteristics of the force measurement system, and the compensation effect is verified based on the step and knock excitation signals.

Findings

The dynamic characteristics of the force sensor obtained by modal analysis and dynamic calibration test are consistent, and the time and frequency domain characteristics of the identified dynamic mathematical model agree well with the actual measurement results. After dynamic compensation, the dynamic characteristics of the force sensor in the frequency domain are obviously improved, and the effective operating frequency band is widened from 500 Hz to 1,560 Hz. In addition, in the time domain, the rise time of the step response signal is reduced from 0.29 ms to 0.17 ms, and the overshoot decreases from 26.6% to 9.8%.

Originality/value

An effective dynamic calibration and compensation method is proposed in this paper, which can be used to improve the dynamic performance of the strain-gauge-type force sensor and reduce the dynamic measurement error of the force measurement system.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 13 June 2023

Marissa Condon

The purpose of the paper is the simulation of nonuniform transmission lines.

Abstract

Purpose

The purpose of the paper is the simulation of nonuniform transmission lines.

Design/methodology/approach

The method involves a Magnus expansion and a numerical Laplace transform. The method involves a judicious arrangement of the governing equations so as to enable efficient simulation.

Findings

The results confirm an effective and efficient numerical solver for inclusion of nonuniform transmission lines in circuit simulation.

Originality/value

The work combines a Magnus expansion and numerical Laplace transform algorithm in a novel manner and applies the resultant algorithm for the effective and efficient simulation of nonuniform transmission lines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 26 April 2024

Emily Bouck, Larissa Jakubow and Sarah Reiley

This chapter sought to answer the following questions: (a) what does special education means for students with intellectual disability?, (b) what is being done, and (c) how do we…

Abstract

This chapter sought to answer the following questions: (a) what does special education means for students with intellectual disability?, (b) what is being done, and (c) how do we maintain tradition? The answers, while complicated, suggest special education for students with intellectual disability historically and currently involves attention to what, how, and where, with the how being the key elements of special education for students with intellectual disability. This chapter discussed the what, how, and where for students with intellectual disability in a historical and current framework while also providing evidence-based practices for students with intellectual disability to implement to maintain the tradition of high-quality services.

Article
Publication date: 15 September 2023

Prabhakaran Koothu Kesavan, Umashankar Subramaniam and Dhafer Jaber Almakhles

This paper aims to present a cascaded pseudo derivative feedback (PDF) plus pseudo derivative feedback plus pseudo derivative feedforward (PDFF) controller for a permanent magnet…

Abstract

Purpose

This paper aims to present a cascaded pseudo derivative feedback (PDF) plus pseudo derivative feedback plus pseudo derivative feedforward (PDFF) controller for a permanent magnet synchronous motor (PMSM) to improve the transient response of the system.

Design/methodology/approach

Proportional integral (PI) plus PI controller and the proposed PDF plus PDFF controller are designed, stability analysis is performed using the extended root locus method, and the effect of the damping coefficient is also extensively studied to validate the robustness of the proposed controller.

Findings

When compared to a cascaded PI plus PI controller, the proposed control approach has a much shorter settling time for the entire system and a 50% reduction in overshoot in stator current under extensive variations in speed with load disturbance.

Originality/value

The proposed controller is programmed into an FPGA Altera Cyclone II and applied to a 1.5 kW laboratory prototype PMSM drive. The effectiveness of the proposed methods has been demonstrated experimentally throughout a wide variable speed range, from 0 to 157 rad/s at different load conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 June 2022

Rajini V. and Margaret Amutha W.

The purpose of this paper is to carry out a detailed analysis of two port converter fed by Solar and wind sources during different operational modes by small signal modelling. The…

Abstract

Purpose

The purpose of this paper is to carry out a detailed analysis of two port converter fed by Solar and wind sources during different operational modes by small signal modelling. The converter is fully characterized and simulated using Matlab/Simulink. The voltage and current waveforms along with their corresponding expressions describing the converter operation are presented in detail. Then the DC-averaged equivalent topology is derived using circuit averaging technique. A complete derivation of the power stage transfer functions relevant to the capacitor voltage loop, such as capacitor voltage to solar voltage and inductor current to wind input voltage is obtained.

Design/methodology/approach

Stability analysis is used to analyze the small deviations around the steady-state operating point which helps in modeling the closed loop converter parameters. This paper presents the analysis, modeling and control of two port Cuk-buck converter topology.

Findings

Based on the results, a control strategy is designed to manage the energy flow within the system. A lab-level prototype for Cuk-buck converter with PWM controller is implemented and tested under various input conditions to study the performance of the converter during seasonal changes. The simulation and experimental results showed that effective operation and control strategy of the hybrid power supply system managed to be achieved alongside its feasible outputs.

Practical implications

This analysis can be extended to all power electronic converters and will be useful for the design of controllers.

Social implications

An appropriate control design plays a key role in enhancing the overall performance of the system. Hence, this paper is intended to present in detail the small signal modeling of the Cuk-buck converter along with the control design for all the switching modes.

Originality/value

Though this type of converter topology has been discussed widely in literature, very scarce literature is available related to modeling and control design of the converter. A state-space averaging model of the converter followed by a type-II compensator design is described, and prototype design and experimental results are also presented.

Article
Publication date: 29 November 2022

Pasala Gopi

The purpose of this study is to analyze direct current (DC) drive stability, including parameter uncertainty and perturbation in the feedback loop, by computing disk margins.

Abstract

Purpose

The purpose of this study is to analyze direct current (DC) drive stability, including parameter uncertainty and perturbation in the feedback loop, by computing disk margins.

Design/methodology/approach

Although the closed-loop stability analysis of a DC drive has been presented well in the referenced papers, the effect of parameter uncertainty and perturbation in the feedback loop has not yet been discussed well. In this study, the conventional and disk-based stability margins were measured and compared for the nominal parameters of the DC drive. Subsequently, the smallest disk-based margins that destabilize the feedback loop for a given perturbation are computed and compared with normal disk margins.

Findings

The disk-based margin offered by the DC drive controlled by the JAYA-PID controller is disk gain margins (DGM) = 8.41 dB and disk phase margin (DPM) = 48.410 and the smallest disk-based margin offered is DGM = 1.51 dB and DPM = 9.950. In addition, the effect of the modeled uncertainty on the disk stability margins was analyzed, and it was observed that the maximum allowable parameter uncertainty with the JAYA controller was 73% of its nominal parameters. The simulation results were validated using an experimental testbed.

Originality/value

This research work is not published anywhere else.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 February 2024

Muneer Ahmad, Muhammad Bilal Zafar and Abida Perveen

This study aims to investigate the comparative importance of factors influencing the customer shift behavior from conventional to Islamic banking for consumer finance in Pakistan.

100

Abstract

Purpose

This study aims to investigate the comparative importance of factors influencing the customer shift behavior from conventional to Islamic banking for consumer finance in Pakistan.

Design/methodology/approach

First, a comprehensive analysis of the existing literature was conducted to identify a broad range of factors related to customer shift behavior. Through an expert sampling, 14 essential factors were chosen for further investigation. Second, a questionnaire was developed using the analytical hierarchy process (AHP). This questionnaire was then distributed among customers who had previously been using conventional banking services but had made a shift toward Islamic banking. The purpose of this questionnaire was to gather data and insights regarding their motivations and decision-making process behind the shift, and a sample 215 customers are taken in the study.

Findings

The results of AHP depicts that the religiosity is a most important factor influencing customers to shift from conventional to Islamic banking, and the second most important factor is pricing. The other subsequent important factors are reputation of the bank, marketing and promotion, service quality, behavior of banks staff, Shariah compliance, management, convenience, fastness and charges/fees. Whereas documentation, ambiance and recommendation are found least important factors to patronize Islamic banking.

Practical implications

The study recommends Islamic banks to create awareness, concentrating on religious factor to have a greater impact on growth of Islamic banking and shrinking of conventional banking. Further, it suggests Islamic banks to apply Shariah-recommended approach of doing business, to help community in best possible way and to launch differentiated marketing techniques to attract customers. It also proposes regulatory authorities to provide facilitation to Islamic banking business by providing level playing field similar to conventional banking, tax equality and conversion of public financing from conventional banking to Islamic banking.

Originality/value

The originality of this study lies in its comprehensive analysis of factors influencing consumer shift behavior from conventional to Islamic banking in the context of consumer finance in Pakistan. By using the AHP, the study provides a structured approach to understanding the relative importance of these factors. This is the uniqueness of the paper that it applies the AHP for the analysis. Furthermore, the study offers practical implications for Islamic banks and regulatory authorities to effectively address and capitalize on this consumer shift trend.

Details

Journal of Islamic Marketing, vol. 15 no. 5
Type: Research Article
ISSN: 1759-0833

Keywords

Article
Publication date: 13 February 2024

Yi Xia, Yonglong Li, Hongbin Zang, Yanpian Mao, Haoran Wang and Jialong Li

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the…

Abstract

Purpose

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the requirements of VBS for small AUVs are analyzed. Second, a modular VBS with high extensibility and easy integration is proposed based on the concepts of generality and interchangeability. Subsequently, a depth-switching controller is proposed based on the modular VBS, which combines the best features of the linear active disturbance rejection controller and the nonlinear active disturbance rejection controller.

Design/methodology/approach

The controller design and endurance of tiny AUVs are challenging because of their low environmental adaptation, limited energy resources and nonlinear dynamics. Traditional and single linear controllers cannot solve these problems efficiently. Although the VBS can improve the endurance of AUVs, the current VBS is not extensible for small AUVs in terms of the differences in individuals and operating environments.

Findings

The switching controller’s performance was examined using simulation with water flow and external disturbances, and the controller’s performance was compared in pool experiments. The results show that switching controllers have greater effectiveness, disturbance rejection capability and robustness even in the face of various disturbances.

Practical implications

A high degree of standardization and integration of VBS significantly enhances the performance of small AUVs. This will help expand the market for small AUV applications.

Originality/value

This solution improves the extensibility of the VBS, making it easier to integrate into different models of small AUVs. The device enhances the endurance and maneuverability of the small AUVs by adjusting buoyancy and center of gravity for low-power hovering and pitch angle control.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 April 2024

Enes Mahmut Göker, Ahmet Fevzi Bozkurt and Kadir Erkan

The purpose of this paper is to introduce a novel cross (+) type yoke with hybrid electromagnets and new reluctance modeling to precisely calculate attraction force is given.

Abstract

Purpose

The purpose of this paper is to introduce a novel cross (+) type yoke with hybrid electromagnets and new reluctance modeling to precisely calculate attraction force is given.

Design/methodology/approach

The comparison of attraction force and torque analyses between the proposed formulation and the existing formulation in the literature is comparatively presented. For the correctness of the force and torque values calculated in the model created, the system was created in ANSYS Maxwell and its accuracy was proved by making analyses. The maglev carrier system is inherently unstable from the point of view of control engineering. For that, it needs an active controller to eliminate this instability. For the levitation of the carrier system, it is necessary to design a controller in three axes (z, α and β). I-PD controller was designed for the air gap control of the carrier system in three axes and the controller parameters were determined by the canonical method.

Findings

While the new formulation proposed in the modeling of the carrier system has a maximum error of 1.03%, the existing formula in the literature has an error of 16.83% in the levitation distance point.

Originality/value

A novel cross-type hybrid carrier system has been proposed in the literature. With the double integral used in modeling the system, it takes a long time to solve symbolically, and it is difficult to simulate dynamic behavior in control validation. To solve this problem, attraction force and inclination torque values are easily characterized by new formulation and besides the simulations are conducted easily. The experimental setup was manufactured and assembled, and the carrier system was successfully levitated, and reference tracking was performed without overshoot.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 12