Search results

1 – 10 of 273
Open Access
Article
Publication date: 2 May 2022

Yongliang Zhang, Jibei Ma, Xingchong Chen and Yun Wang

Under different ground motion excitation modes, the spatial coupling effect of seismic response for the arch bridge with thrust, seismic weak parts and the internal force…

Abstract

Purpose

Under different ground motion excitation modes, the spatial coupling effect of seismic response for the arch bridge with thrust, seismic weak parts and the internal force components of the control section of main arch ribs are analyzed.

Design/methodology/approach

Taking a 490 m deck type railway steel truss arch bridge as the background, the dynamic calculation model of the whole bridge was established by SAP2000 software. The seismic response analyses under one-, two- and three-dimension (1D, 2D and 3D) uniform ground motion excitations were carried out.

Findings

For the steel truss arch bridge composed of multiple arch ribs, any single direction ground motion excitation will cause large axial force in the chord of arch rib. The axial force caused by transverse and vertical ground motion excitation in the chord of arch crown area is 1.4–3.6 times of the corresponding axial force under longitudinal seismic excitation. The in-plane bending moment caused by the lower chord at the vault is 4.2–5.5 times of the corresponding bending moment under the longitudinal seismic excitation. For the bottom chord of arch rib, the arch foot is the weak part of earthquake resistance, but for the upper chord of arch rib, the arch foot, arch crown and the intersection of column and upper chord can all be the potential earthquake-resistant weak parts. The normal stress of the bottom chord of the arch rib under multidimensional excitation is mainly caused by the axial force, but the normal stress of the upper chord of the arch rib is caused by the axial force, in-plane and out of plane bending moment.

Originality/value

The research provides specific suggestions for ground motion excitation mode and also provides reference information for the earthquake-resistant weak part and seismic design of long-span deck type railway steel truss arch bridges.

Article
Publication date: 24 June 2021

Anshul Sharma, Pardeep Kumar, Hemant Kumar Vinayak, Suresh Kumar Walia and Raj Kumar Patel

This study aims to include the diagnosis of an old concrete deck steel truss rural road bridge in the damaged and retrofitted state through vibration response signals.

Abstract

Purpose

This study aims to include the diagnosis of an old concrete deck steel truss rural road bridge in the damaged and retrofitted state through vibration response signals.

Design/methodology/approach

The analysis of the vibration response signals is performed in time and time-frequency domains using statistical features-root mean square, impulse factor, crest factor, kurtosis, peak2peak and Stockwell transform. The proposed methodology uses the Hilbert transform in combination with spectral kurtosis and bandpass filtering technique for obtaining robust outcomes of modal frequencies.

Findings

The absence or low amplitude of considered mode shape frequencies is observed both before and after retrofitting of bridge indicates the deficient nodes. The kurtosis feature among all statistical approaches is able to reflect significant variation in the amplitude of different nodes of the bridge. The Stockwell transform showed better resolution of present modal frequencies but due to the yield of additional frequency peaks in the vicinity of the first three analytical modal frequencies no decisive conclusions are achieved. The methodology shows promising outcomes in eliminating noise and visualizing distinct modal frequencies of a steel truss bridge.

Social implications

The findings of the present study help in analyzing noisy vibration signals obtained from various structures (civil or mechanical) and determine vulnerable locations of the structure using mode shape frequencies.

Originality/value

The literature review gave an insight into few experimental investigations related to the combined application of Hilbert transform with spectral kurtosis and bandpass filtering technique in determining mode frequencies of a steel truss bridge.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 December 2023

Niveen Badra, Hosam Hegazy, Mohamed Mousa, Jiansong Zhang, Sharifah Akmam Syed Zakaria, Said Aboul Haggag and Ibrahim Abdul-Rashied

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel

Abstract

Purpose

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel pedestrian bridges (SPBs). The cost estimation process uses two main parameters, but the main goal is to create a cost estimation model.

Design/methodology/approach

This study explores a flexible model design that uses computing capabilities for decision-making. Using cost optimization techniques, the model can select an optimal pedestrian bridge system based on multiple criteria that may change independently. This research focuses on four types of SPB systems prevalent in Egypt and worldwide. The study also suggests developing a computerized cost and weight optimization model that enables decision-makers to select the optimal system for SPBs in keeping up with the criteria established for that system.

Findings

In this paper, the authors developed an optimization model for cost estimates of SPBs. The model considers two main parameters: weight and cost. The main contribution of this study based on a parametric study is to propose an approach that enables structural engineers and designers to select the optimum system for SPBs.

Practical implications

The implications of this research from a practical perspective are that the study outlines a feasible approach to develop a computerized model that utilizes the capabilities of computing for quick cost optimization that enables decision-makers to select the optimal system for four common SPBs based on multiple criteria that may change independently and in concert with cost optimization during the preliminary design stage.

Social implications

The model can choose an optimal system for SPBs based on multiple criteria that may change independently and in concert with cost optimization. The resulting optimization model can forecast the optimum cost of the SPBs for different structural spans and road spans based on local unit costs of materials cost of steel structures, fabrication, erection and painting works.

Originality/value

The authors developed a computerized model that uses spreadsheet software's capabilities for cost optimization, enabling decision-makers to select the optimal system for SPBs meeting the criteria established for such a system. Based on structural characteristics and material unit costs, this study shows that using the optimization model for estimating the total direct cost of SPB systems, the project cost can be accurately predicted based on the conceptual design status, and positive prediction outcomes are achieved.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 May 2021

Anshul Sharma, Pardeep Kumar, Hemant Kumar Vinayak, Raj Kumar Patel and Suresh Kumar Walia

This study aims to perform the experimental work on a laboratory-constructed steel truss bridge model on which hammer blows are applied for excitation. The vibration response…

Abstract

Purpose

This study aims to perform the experimental work on a laboratory-constructed steel truss bridge model on which hammer blows are applied for excitation. The vibration response signals of the bridge structure are collected using sensors placed at different nodes. The different damaged states such as no damage, single damage, double damage and triple damage are introduced by cutting members of the bridge. The masked noise with recorded vibration responses generates challenge to properly analyze the health of bridge structure.

Design/methodology/approach

The analytical modal properties are obtained from finite element model (FEM) developed using SAP2000 software. The response signals are analyzed in frequency domain by power spectrum and in time-frequency domain using spectrogram and Stockwell transform. Various low pass signal-filtering techniques such as variational filter, lowpass sparse banded (AB) filter and Savitzky–Golay (SG) differentiator filter are also applied to refine vibration signals. The proposed methodology further comprises application of Hilbert transform in combination with MUSIC and ESPRIT techniques.

Findings

The outcomes of SG filter provided the denoised signals using appropriate polynomial degree with proper selected window length. However, certain unwanted frequency peaks still appeared in the outcomes of SG filter. The SG-filtered signals are further analyzed using fused methodology of Hilbert transform-ESPRIT, which shows high accuracy in identifying modal frequencies at different states of the steel truss bridge.

Originality/value

The sequence of proposed methodology for denoising vibration response signals using SG filter with Hilbert transform-ESPRIT is a novel approach. The outcomes of proposed methodology are much refined and take less computational time.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 23 November 2023

Xiaochen Ju

This research addresses the diverse characteristics of existing railway steel bridges in China, including variations in construction age, design standards, structural types…

Abstract

Purpose

This research addresses the diverse characteristics of existing railway steel bridges in China, including variations in construction age, design standards, structural types, manufacturing processes, materials and service conditions. It also focuses on prominent defects and challenges related to heavy transportation conditions, particularly low live haul reserves and severe fatigue problems.

Design/methodology/approach

The study encompasses three key aspects: (1) Adaptability assessment: It begins with assessing the suitability of existing railway steel bridges for heavy-haul operations through comprehensive analyses, experiments and engineering applications. (2) Strengthening: To combat frequent crack defects in the vertical stiffener end structure of girder webs, fatigue performance tests and reinforcement scheme experiments were conducted. These experiments included the development of a hot-spot stress S-N curve for this structure, validating the effectiveness of methods like crack stop holes, ultrasonic hammering and flange angle steel. (3) Service life extension: Research on the cruciform welded joint structure (non-fusion transfer type) focused on fatigue performance over the long life cycle. This led to the establishment of a fatigue S-N curve, enhancing Chinese design codes.

Findings

The research achieved several significant outcomes: (1) Successful implementation of strengthening and retrofitting measures on a 64-m single-span double-track railway steel truss girder on an existing heavy-duty line. (2) Post-reinforcement, a substantial 26% to 32% reduction in live haul stress on bridge members was achieved. (3) The strengthening and retrofitting efforts met design expectations, enabling the bridge to accommodate vehicles with a 30-ton axle haul on the railway line.

Originality/value

This research systematically tackles challenges and defects associated with Chinese existing railway steel bridges, providing valuable insights into adaptability assessment, strengthening techniques and service life extension methods. Furthermore, the development of fatigue S-N curves and the successful implementation of bridge enhancements have practical implications for improving the resilience and operational capacity of railway steel bridges in China.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 10 July 2007

Yong Bai, Seong Hoon Kim and William R. Burkett

The potential threats of extreme events to highway bridges have received increased attention from government agencies, the engineering and construction communities, and the…

Abstract

Purpose

The potential threats of extreme events to highway bridges have received increased attention from government agencies, the engineering and construction communities, and the traveling public. These events include terrorist attacks as well as human‐induced and natural hazards such as earthquakes, explosions, fires, floods, and hurricanes. To respond to the potential threats on highway bridges, a research project was conducted to identify rapid bridge replacement processes, techniques, and needs for improvements.

Design/methodology/approach

To achieve the research objectives, a detailed case study of previous bridge replacement following an extreme event was conducted. The case study was performed using a three‐step approach. First, the research team reviewed the literature related to the case. Second, the research team interviewed the people who were involved with the case via the telephone. Third, the research team conducted a written survey to gain knowledge about the previously unanswered questions and additional information related to the case.

Findings

After studying the case, lessons learned were identified first. Then, the research team determined the processes that were used in the rapid bridge replacements and the needed improvements so that the research community could investigate new technologies to advance current practices.

Originality/value

The lessons learned could be of benefit to government agencies who are responsible for development of the enhanced emergency response plans for highway bridges, and engineering and construction communities who are responsible for design and reconstruction of the damaged bridges. The development of new technologies, if successful, will ultimately enhance the capability of rapid bridge replacement after extreme events.

Details

Engineering, Construction and Architectural Management, vol. 14 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 June 2018

Guilherme Alencar, Gonçalo Ferreira, Abílio M.P. de Jesus and Rui Calçada

The purpose of this paper is to investigate the fatigue performance of a welded detail from a composite steel-concrete railway twin girder bridge caused by a passenger train…

Abstract

Purpose

The purpose of this paper is to investigate the fatigue performance of a welded detail from a composite steel-concrete railway twin girder bridge caused by a passenger train circulating at varying speeds, by identifying the dynamic amplification scenarios induced by resonance. For this purpose, the hotspot stress method is used, instead of the traditional nominal stress methods.

Design/methodology/approach

This paper assesses the fatigue behavior of a welded connection considering critical stress concentration locations (hotspot). Finite element analysis (FEA) is applied, utilizing both a global and a local submodel, made compatible by displacements field interpolation. The dynamic response is obtained through the modal superposition method. Stress cycles are extracted with the rainflow counting method and the fatigue damage is calculated with Palmgren-Miner’s rule. The feasibility of five submodels with different mesh densities, i.e. 1, 2, 4, 8 and 20 mm is verified.

Findings

An increase in the fatigue damage due to the resonance effect was found for the train traveling at a speed of 225 km/h. A good agreement between the computed fatigue damage for the submodels is achieved. However, a non-monotonic hotspot stress/fatigue damage vs mesh density convergence was observed with a peak observed for the 4 mm model, which endorses the mesh sensitivity that could occur when using the surface stress extrapolation detailed rules specified in the standards for the hotspot stress method.

Originality/value

Advanced dynamic analyses are proposed to obtain local stresses in order to apply a local method for the fatigue assessment of a bridge’s structure subjected to high-speed railway traffic on the basis of the mode superposition technique resulting in much less computing times.

Details

International Journal of Structural Integrity, vol. 9 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 19 November 2021

Marcelo Greco and Daniel Henrique Nunes Peixoto

In this paper the use of classical strain measures in analysis of trusses at finite deformations will be discussed. The results will be compared to the ones acquired using a novel…

Abstract

Purpose

In this paper the use of classical strain measures in analysis of trusses at finite deformations will be discussed. The results will be compared to the ones acquired using a novel strain measure based on the Hyperbolic Sine function. Through the evaluation of results, algebraic development and graph analysis, the properties of the Hyperbolic Sine strain measure will be examined.

Design/methodology/approach

Through graph plotting, comparisons between the novel strain measure and the classic ones will be made. The formulae for the implementation of the Hyperbolic Sine strain measure into a positional finite element method are developed. Four engineering applications are presented and comparisons between results obtained using all strain measures studied are made.

Findings

The proposed strain measure, Hyperbolic Sine, has objectivity and symmetry. The linear constitutive model formed by the Hyperbolic Sine strain and its conjugated stress presents an increasing stiffness, both in compression and tension, a behavior that can be useful in the modeling of several materials.

Research limitations/implications

The structural analysis performed on the four examples of trusses in this article did not consider the variation of the cross-sectional area of the elements or the buckling phenomenon, moreover, only elastic behavior is considered.

Originality/value

The present article proposes the use of a novel strain measure family, based on the Hyperbolic Sine function and suitable for structural applications. Mathematical expressions for the use of the Hyperbolic Sine strain measure are established following the energetic concepts of the positional formulation of the finite element method.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 July 2023

Qaiser Uz Zaman Khan, Muhammad Farhan and Ali Raza

The main purpose of this study is to examine the damage behavior of flexural members under different loading conditions. The finite element model is proposed for the prediction of…

Abstract

Purpose

The main purpose of this study is to examine the damage behavior of flexural members under different loading conditions. The finite element model is proposed for the prediction of modal parameters, damage assessment and damage detection of flexural members. Moreover, the analysis of flexural members has been done for the sensor arrangement to accurately predict the damage parameters without the laborious work of experimentation in the laboratory.

Design/methodology/approach

Beam-like structures are structures that are subjected to flexural loadings that are involved in almost every type of civil engineering construction like buildings, bridges, etc. Experimental Modal Analysis (EMA) is a popular technique to detect damages in structures without requiring tough and complex methods. Experimental work conducted in this study concludes that a structure experiences high changes in modal properties once when cracking occurs and then at the stage where cracks start at the critical neutral axis. Moreover, among the various modal parameters of the flexural members, natural frequency and mode shapes are the viable parameters for the damage detection.

Findings

For torsional mode, drop in natural frequency is high for higher damages as compared to low levels. This is because of the opening and closing of cracks in modal testing. When damage occurs in the structure, there is a reduction in the magnitude of the FRF plot. The measure of this drop can also lead to damage assessment in addition to damage detection. The natural frequency of the system is the most reliable modal parameter in detecting damages. However, for damage localization, the next step after damage assessment, mode shapes can be more helpful as compared to all other parameters.

Originality/value

Effect on Dynamic Properties of Flexural Members during the Progressive Deterioration of Reinforced Concrete Structures is studied.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 June 2021

Kexin Zhang, Qi Tianyu, Li Dachao, Xue Xingwei, Fayue Wu and Xinfeng Liu

In order to understand the status of the bridge reinforcement process, the construction process monitoring of the reinforced bridge is carried out. The T-beam bridge was tested…

Abstract

Purpose

In order to understand the status of the bridge reinforcement process, the construction process monitoring of the reinforced bridge is carried out. The T-beam bridge was tested using the truck loading test. The displacements and concrete strains of the bridge at mid-span were measured during the test.

Design/methodology/approach

This paper describes an innovative technique, external prestressing, used to strengthen a 36-year-old prestressed T-beam bridge. This paper introduces the construction process of the prestressed reinforcement method, and makes a theoretical analysis of the reinforced bridge through the establishment of the reinforcement model.

Findings

This study showed that the structural capacity and performance of the bridge were enhanced with externally prestressed steel strand strengthening.

Originality/value

The innovative reinforcement method of prestressed T-shaped bridge is put forward, which has guiding significance for similar bridge reinforcement and maintenance.

Details

International Journal of Structural Integrity, vol. 12 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 273