Search results

21 – 30 of over 17000
Article
Publication date: 9 March 2010

Euripidis Mistakidis

The purpose of this paper is to provide the research and practising engineers with insight on the benefits of using low‐yield point steel with respect to ordinary steel as a…

Abstract

Purpose

The purpose of this paper is to provide the research and practising engineers with insight on the benefits of using low‐yield point steel with respect to ordinary steel as a construction material for shear wall panels. The paper seeks to focus on the behaviour of such panels when installed in new or existing structures in order to improve their seismic performance.

Design/methodology/approach

Finite element models are applied in order to approximate the structural response of low‐yield steel panels, used for seismic applications. Owing to the specific characteristics of the problem at hand, geometric and material nonlinearities have to be accurately considered. For comparison reasons, low‐yield point steel and ordinary steel are considered as construction materials for the aforementioned panels. The paper examines both the case of “pure shear” steel panel and also the more realistic case that the panel is encased in the surrounding frame.

Findings

The paper reaches a number of interesting conclusions. The beneficial behaviour of low‐yield steel panels with respect to ordinary steel panels is verified. Comments are made distinguishing the differences in the behaviour of panels surrounded by strong elements (“encased” panels) compared with that of panels submitted to pure shear. Finally, the improved seismic behaviour of existing structures retrofitted by shear wall panels is verified.

Originality/value

The paper exhibits numerically the advantages of low‐yield point steel with respect to ordinary steel as a construction material for panels and, second, contributes to the comprehension of the realistic panel behaviour of encased panels. More specifically, the paper focuses on the differences in the behaviour of encased steel panels with respect to the “pure shear” steel panels.

Details

Engineering Computations, vol. 27 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 June 2017

Farshad Hashemi Rezvani, Behrouz Behnam, Hamid Reza Ronagh and M. Shahria Alam

The purpose of this paper is to determine the failure progression resistance of the steel moment-resisting frames subjected to various beam-removal scenarios after application of…

Abstract

Purpose

The purpose of this paper is to determine the failure progression resistance of the steel moment-resisting frames subjected to various beam-removal scenarios after application of the design earthquake pertinent to the structure by investigating a generic eight-story building.

Design/methodology/approach

The structure is first pushed to arrive at a target roof displacement corresponding to life safety level of performance. To simulate the post-earthquake beam-removal scenario, one of the beam elements is suddenly removed from the structure at a number of different positions. The structural response is then evaluated by using nonlinear static and dynamic analyses.

Findings

The results show that while no failure is observed in all of the scenarios, the vulnerability of the upper stories is much greater than that of the lower stories. In the next step, the structural resistance to such scenarios is determined. The results confirm that for the case study structure, at most, the resistance to failure progression in upper stories is 58 percent more than that of lower stories.

Originality/value

Failure and fracture of beam-to-column connections resulting in removal of beam elements may lead to a chain of subsequent failures in other structural members and eventually lead to progressive collapse in some cases. Deficiency in design or construction process of structures when combined by application of seismic loads may lead to such an event.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 July 2021

Vishal M. and Satyanarayanan K.S.

This paper delineates a literature review on fire-induced progressive collapse on structures and the effect of high temperature on structures and elements. After the occurrences…

Abstract

Purpose

This paper delineates a literature review on fire-induced progressive collapse on structures and the effect of high temperature on structures and elements. After the occurrences of fire in the World Trade Center in the USA, the researchers started concentrating on the progressive collapse that happens due to high temperature. Currently, most of the researchers are working on fire-induced progressive collapse on structures using high-temperature behavior on materials which are used for construction. The researchers have been doing an intensive study to find a better strategy to prevent the building from structural fire damage or collapse with available codes and guidelines throughout the world. This paper aims to provide a better understanding and analytical solutions on the basis of the recent works done by researchers in fire-induced progressive collapse and methods adopted to find the collapse mechanism.

Design/methodology/approach

This paper is written by studying different literature papers of 109 related to progressive collapse on structures and fire-induced progressive collapse.

Findings

The behavior of structures due to high temperature and collapse conditions due to fire in different scenarios is identified.

Originality/value

This paper fulfills an identified need to study how the structure can withstand high-temperature conditions in our day-to-day lives.

Details

Journal of Structural Fire Engineering, vol. 12 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 June 2023

Takumi Yamaguchi and Fuminobu Ozaki

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope…

41

Abstract

Purpose

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections at fire and post fire.

Design/methodology/approach

Steady-state tests from ambient temperature (20 °C) to 800 °C, transient-state tests under the allowable design tensile force and tensile tests in an ambient temperature environment after heating (heating temperatures of 200–800 °C) were conducted.

Findings

The tensile strengths of the wire rope and end-connection specimens at both fire and post fire were obtained. The steel wire rope specimens possessed larger reduction factors than general hot-rolled mild steels (JIS SS400) and high-strength steel bolts (JIS F10T). The end-connection specimens with sufficient socket lengths exhibited ductile fracture of the wire rope part at both fire and post fire; however, those with short socket lengths experienced a pull-out fracture at the socket.

Originality/value

The fundamental and important tensile test results of the super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections were accumulated at fire and post fire, and the fracture modes were clarified. The obtained test results contribute to fire resistance performance-based design of cable steel structures at fire and fire-damage investigations to consider their reusability post fire.

Article
Publication date: 12 February 2021

Tong Lin, Sainan Lyu, Rebecca Jing Yang and Linda Tivendale

Prefabricated housing has become a boom industry across the world; however, the uptake of offsite construction (OSC) approaches in Australian low-rise buildings is rather low…

1338

Abstract

Purpose

Prefabricated housing has become a boom industry across the world; however, the uptake of offsite construction (OSC) approaches in Australian low-rise buildings is rather low compared with high-rise buildings in other countries. This study aims to investigate and analyse the adoption of different levels of OSC approaches and the selection of different procurement options in Australian low-rise residential buildings.

Design/methodology/approach

The research objectives were pursued through a mixed research method. An empirical questionnaire survey was carried out with 35 professionals in the Australian building and construction industry. Semi-structured interviews were conducted with 20 interviewees and analysed using thematic analysis method in NVivo software.

Findings

The research results found that the most suitable OSC level for Australian low-rise buildings is components-based prefabrication and identified the barriers to OSC uptake for each OSC level. The study also showed that the best option of procuring prefabricated products is from Australian manufacturers, followed by Australian suppliers/dealers and overseas manufacturers. Panelised prefabrication and components-based prefabrication are ranked as the most suitable OSC approaches for Australian manufacturers. Modular prefabrication is regarded as the most suitable for overseas manufacturer, while components-based prefabrication is the most suitable for Australian suppliers/dealers.

Originality/value

The selection of various OSC approaches and different procurement options in the low-rise residential buildings are scarcely explored topic, and thus, this study provides knowledge of interest for both researchers and practitioners.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 17 June 2014

Anil Agarwal, Kristi Selden and Amit Varma

This paper presents a qualitative assessment of the influence of the composite floor system and shear-tab connections on the stability behavior of a typical mid-rise (10-story…

Abstract

This paper presents a qualitative assessment of the influence of the composite floor system and shear-tab connections on the stability behavior of a typical mid-rise (10-story) steel building subjected to corner compartment fires. A ten-story steel building with composite floor systems was designed following the design practices in the US. The building had an interior core of reinforced concrete (RC) shear walls to resist the lateral loads. Effects of gravity loads and fire conditions were simulated using the finite element method and numerical analysis techniques. The concrete material model used in the numerical simulations was benchmarked using experimental data from concrete slab thermal tests. The results from the numerical investigations indicated that at elevated temperatures, the composite beam undergoes elongation, sagging and rotation at the beam ends. This results in additional rotation and compression demands on the connections at the ends. The shear-tab connections provided significant negative moment resistance at the beam ends at elevated temperatures. This negative moment resistance at the shear-tab connections increased the flexural capacity of the composite beam by effectively redistributing the moment demands due to the applied gravity loads.

Details

Journal of Structural Fire Engineering, vol. 5 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 December 2016

Ha Nguyen, Ann E. Jeffers and Venkatesh Kodur

This paper aims to address a need for improving the structural resilience to multi-hazard threats including fire and progressive collapse caused by the loss of a column.

Abstract

Purpose

This paper aims to address a need for improving the structural resilience to multi-hazard threats including fire and progressive collapse caused by the loss of a column.

Design/methodology/approach

The focus is on a steel moment frame that uses welded-unreinforced flange-bolted web connections between the beams and columns. A three-dimensional finite element (FE) model was created in ABAQUS with temperature-dependent properties for steel based on the Eurocode. The model was validated against experimental data at ambient and elevated temperature.

Findings

The failure mechanisms in the FE model were consistent with experimental observations. Two scenarios were considered: fixed load with increasing temperature (i.e. simulating column failure prior to fire) and fixed temperature with increasing load (i.e. simulating column failure during fire).

Originality/value

A macro element (or component-based) model was also introduced and validated against the FE model and the experimental data, offering the possibility of analyzing large-scale structural systems with reasonable accuracy and improved computational efficiency.

Details

Journal of Structural Fire Engineering, vol. 7 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 November 2021

Abdalhakem Alkhadashi, Fouad Mohammad, Rasheedah Olamide Zubayr, Hynda Aoun Klalib and Piotr Balik

The optimality objectives are the structure weight and embodied energy as well as calculating the cost and embodied carbon of the resulting optimum options. Three optimality…

Abstract

Purpose

The optimality objectives are the structure weight and embodied energy as well as calculating the cost and embodied carbon of the resulting optimum options. Three optimality algorithms developed in MATLAB, namely, genetic algorithms (GA), particle swarm optimisation (PSO) and harmony search algorithm (HSA), were used for structural optimisation to compare the effectiveness of the algorithms. Two life-cycle stages were considered, production and construction stages, which include three boundaries: materials, transportation and erection. In the formulation of the optimum design problem, 107 universal steel beams (UKB) and 64 columns (UKC) sections were considered for the discrete design variables. The imposed behavioural constraints in the optimum design process were set according to the provision of Eurocode 3 (EC3). The study aims to find the optimum solution of 2D steel frames whilst considering weight and embodied energy, investigate the performance of the analysis integrated with MATLAB and provide three examples to which all these are applied to.

Design/methodology/approach

Undoubtedly, in structural engineering, the best design of any structure aims at the most economical and environmental option, without impairing the functional and its structural integrity. In the paper, multi-objective stochastic search methods are proposed for optimum design of three two-dimensional multi-story frames.

Findings

Results showed that the optimised designs obtained by HSA are better than those found by the GA and PSO with an average difference of 16% from GA and PSO, where this difference increases at larger frame structures. It was, therefore, concluded that the integration of the analysis, design and optimisation methods employed in MATLAB can be effective in obtaining prompt optimum results during the decision-making stage.

Research limitations/implications

There may be some possible limitations in the study. Due to the time constraints, only three meta-heuristic approaches were investigated, where more methods should be investigated to fully understand their effectiveness in multi-objective problems.

Originality/value

Investigating the performance of three optimisation methods in multi-objective problems developed in MATLAB. More importantly, developing optimisation models for evaluation of embodied energy, embodied carbon and cost for steel structures to assist designers, during the initial stages, to evaluate design decisions against their energy consumption and carbon impacts.

Details

International Journal of Structural Integrity, vol. 13 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 19 August 2021

Linh Truong-Hong, Roderik Lindenbergh and Thu Anh Nguyen

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation…

2254

Abstract

Purpose

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation estimation strongly depends on quality of each step of a workflow, which are not fully addressed. This study aims to give insight error of these steps, and results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. Thus, the main contributions of the paper are investigating point cloud registration error affecting resulting deformation estimation, identifying an appropriate segmentation method used to extract data points of a deformed surface, investigating a methodology to determine an un-deformed or a reference surface for estimating deformation, and proposing a methodology to minimize the impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Design/methodology/approach

In practice, the quality of data point clouds and of surface extraction strongly impacts on resulting deformation estimation based on laser scanning point clouds, which can cause an incorrect decision on the state of the structure if uncertainty is available. In an effort to have more comprehensive insight into those impacts, this study addresses four issues: data errors due to data registration from multiple scanning stations (Issue 1), methods used to extract point clouds of structure surfaces (Issue 2), selection of the reference surface Sref to measure deformation (Issue 3), and available outlier and/or mixed pixels (Issue 4). This investigation demonstrates through estimating deformation of the bridge abutment, building and an oil storage tank.

Findings

The study shows that both random sample consensus (RANSAC) and region growing–based methods [a cell-based/voxel-based region growing (CRG/VRG)] can be extracted data points of surfaces, but RANSAC is only applicable for a primary primitive surface (e.g. a plane in this study) subjected to a small deformation (case study 2 and 3) and cannot eliminate mixed pixels. On another hand, CRG and VRG impose a suitable method applied for deformed, free-form surfaces. In addition, in practice, a reference surface of a structure is mostly not available. The use of a fitting plane based on a point cloud of a current surface would cause unrealistic and inaccurate deformation because outlier data points and data points of damaged areas affect an accuracy of the fitting plane. This study would recommend the use of a reference surface determined based on a design concept/specification. A smoothing method with a spatial interval can be effectively minimize, negative impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Research limitations/implications

Due to difficulty in logistics, an independent measurement cannot be established to assess the deformation accuracy based on TLS data point cloud in the case studies of this research. However, common laser scanners using the time-of-flight or phase-shift principle provide point clouds with accuracy in the order of 1–6 mm, while the point clouds of triangulation scanners have sub-millimetre accuracy.

Practical implications

This study aims to give insight error of these steps, and the results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds.

Social implications

The results of this study would provide guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. A low-cost method can be applied for deformation analysis of the structure.

Originality/value

Although a large amount of the studies used laser scanning to measure structure deformation in the last two decades, the methods mainly applied were to measure change between two states (or epochs) of the structure surface and focused on quantifying deformation-based TLS point clouds. Those studies proved that a laser scanner could be an alternative unit to acquire spatial information for deformation monitoring. However, there are still challenges in establishing an appropriate procedure to collect a high quality of point clouds and develop methods to interpret the point clouds to obtain reliable and accurate deformation, when uncertainty, including data quality and reference information, is available. Therefore, this study demonstrates the impact of data quality in a term of point cloud registration error, selected methods for extracting point clouds of surfaces, identifying reference information, and available outlier, noisy data and/or mixed pixels on deformation estimation.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 30 January 2019

Said Hicham Boukhalkhal, Abd Nacer Touati Ihaddoudène, Luis Filipe Da Costa Neves and Wafa Madi

The purpose of this paper is to investigate the static and dynamic inelastic response of rigid and semi-rigid connections of steel structures with concrete-filled steel tube…

146

Abstract

Purpose

The purpose of this paper is to investigate the static and dynamic inelastic response of rigid and semi-rigid connections of steel structures with concrete-filled steel tube (CFST) columns built in high seismic areas, and to compare it with those with open section columns.

Design/methodology/approach

CFST columns are frequently used in moment resistant steel frames located in seismic areas due to their inherent advantages, including their ductility, energy absorption capacity as well as their high bearing capacity. The smart combination of steel and concrete makes it possible to benefit from the advantages of both components to the maximum. This research work presents the nonlinear dynamic response of moment resistant steel frames with CFST columns, with rigid or semi-rigid connections, built in high seismic areas, according to the Algerian seismic code RPA 99/2003, European EC8 and American FEMA 356 to show the nonlinear characteristics of this type of structures, and their advantages over steel frames with open section columns.

Findings

The paper presents the advantages of using CFST columns with rigid and semi-rigid connections on the seismic response of portal steel frames. A high performance level in terms of ductility, plastic hinges distribution and their order of appearance has been obtained. It also shows the low effect of seismic loading on the structural elements with CFST columns compared to structures with open section columns.

Originality/value

The investigation of the numerical results has shown the possibility of their use in the seismic areas for their adequate performance, and also with respect to the design limits specified in the seismic guidelines. In addition, this study represents a first step to develop seismic performance factors for steel structures with CFST columns in Algeria, where the Algerian code do not include a comprehensive specification for the composite steel structures.

Details

International Journal of Structural Integrity, vol. 10 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

21 – 30 of over 17000