Search results

1 – 10 of 908
Article
Publication date: 14 June 2022

Mustafa Eken

The aim of this study is to investigate the usability of horsetail, sunflower stalk, wheat stalk and corn stalk ashes as additives in paints and their performance against corrosion

Abstract

Purpose

The aim of this study is to investigate the usability of horsetail, sunflower stalk, wheat stalk and corn stalk ashes as additives in paints and their performance against corrosion resistance when used.

Design/methodology/approach

The ashes of horsetail, sunflower stalk, wheat stalk and corn stalk were investigated in this study in single, binary and ternary combinations with three different percentages as additives in paints. Samples of concrete with any combinations of ashes resisted against the corrosion of steel reinforcements, but horsetail ash proved to be the most effective.

Findings

It can be said that these research results show that the paint containing horsetail ash is an excellent coating material that can be used in paints for the corrosion resistance of steel in reinforced concrete. The corrosion rate decreased with the increase in the amount of reactive SiO2. There was less mass loss with the formation of resistance against corrosion in the horsetail ash added concretes. That is why horsetail ash is one of the most effective options for the aforementioned purpose.

Originality/value

Being cheap and easily obtainable, the materials used for coating in this study are perfect candidates for industrial use.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 2003

A. Routoulas, P. Pantazopoulou and G. Batis

A number of applications selected with variations of factors affecting the corrosion of mortar steel reinforcements are discussed in this paper. Corrosion estimation by means of a…

Abstract

A number of applications selected with variations of factors affecting the corrosion of mortar steel reinforcements are discussed in this paper. Corrosion estimation by means of a strain gauge (SG) technique was used in several cases to confirm the validity of the method. The efficiency of corrosion inhibitors, the protection offered by the addition of minerals, the curing time influence, and the corrosion resistance of various steel types can be estimated by means of the short term SG test technique. Good correlations were found in all cases of application between the corrosion rates computed from SG technique and the mass loss data. Additionally, the method was applied for swelling measurements of mortar specimens caused by the degradation of FRP reinforcements in the corrosive environments.

Details

Anti-Corrosion Methods and Materials, vol. 50 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 December 2020

Charis Apostolopoulos, Argyro Drakakaki, Alexandros Katsaounis, Maria Bardi and Konstantinos Faidon Koulouris

In the present study, an effort has been made to estimate the effect of significant parameters on the vulnerability of steel reinforcement to corrosion, using both impressed…

Abstract

Purpose

In the present study, an effort has been made to estimate the effect of significant parameters on the vulnerability of steel reinforcement to corrosion, using both impressed current density technique and Tafel extrapolation method.

Design/methodology/approach

Five sets of tests were performed. Corrosion vulnerability of various diameters, temperature and pH effect on the corrosion process, potential corrosion tendency after a precorrosion period and declination from the theoretical damage prediction model are some of the parameters examined

Findings

The results of the tests provide useful information on the main parameters, determining the quality of the corrosion damage.

Originality/value

The originality of the present study is the fact that an effort has been made to estimate the effect of significant parameters on the vulnerability of steel reinforcement to corrosion, using both impressed current density technique and Tafel extrapolation method. Interesting conclusions emerged.

Details

International Journal of Structural Integrity, vol. 12 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 January 2015

Shamsad Ahmad and Mohammed M. Hussein Al-Tholaia

The purpose of this paper was mainly to select one of the three types of coatings for protection of steel used as reinforcement in composite pipes (thin steel shell covered by…

Abstract

Purpose

The purpose of this paper was mainly to select one of the three types of coatings for protection of steel used as reinforcement in composite pipes (thin steel shell covered by cement-mortar) subjected to chloride exposure. To achieve this target, an attempt was made to develop a simple methodology for evaluating the performance of corrosion protection measures in terms of chloride threshold level (CTL) and corrosion initiation time (TI).

Design/methodology/approach

Bare, epoxy, red oxide and zinc primer-coated steel strips were embedded in cement mortar with sand/cement and water/cement ratios of 2 and 0.5 (by mass), respectively, to prepare the specimens which were exposed to chloride solution having a high concentration of 10 per cent NaCl. For determining the amounts of the water-soluble chloride diffused inside the specimens, powdered samples of mortar were collected from two different depths from the exposed surface of specimens on completion of each of the four different exposure times. The corrosion current densities were determined at two different stages. A step-by-step procedure for calculating CTL and TI using the measured chloride contents and corrosion current densities was established with the help of relevant information available in the literature.

Findings

Based on the comparison of the values of CTL and TI calculated for bare steel and steel with all three types of coatings, utilizing the experimental data and the proposed calculation procedure, the epoxy-coated steel was found to have the best performance.

Originality/value

This research has resulted into development of a simple methodology for evaluation of the performance of protective measures against corrosion of steel embedded in mortar or concrete exposed to chloride-bearing environment.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 July 2019

Argyro Drakakaki, Alkiviadis Apostolopoulos and Charis Apostolopoulos

The safety of reinforced concrete structures is generally related to the expected service life of their individual materials. Corrosion damage manifesting on steel reinforcement

Abstract

Purpose

The safety of reinforced concrete structures is generally related to the expected service life of their individual materials. Corrosion damage manifesting on steel reinforcement is usually underestimated, although it greatly affects both load bearing capacity and plastic deformation limits of steel reinforcement. Corrosion damage degree has a great impact on the life expectancy of structures. This paper aims to discuss these issues.

Design/methodology/approach

In the present study, an effort has been made to examine and present critical parameters, which are significantly responsible for the differentiation of the corrosion damage level, as far as mass loss is concerned. Consequently, the size effect of the exposed – to the aggressive conditions – area of the specimen, as well as the volume of the protected (against corrosion) area, was examined in detail.

Findings

Differential aeration greatly affects the results of corrosion on the material, given that under both high and low oxygen concentration corrosion process is still ongoing.

Originality/value

Findings proceeded are worth mentioning, as they may contribute to a more pertinent evaluation of the corrosion damage (as far as mass loss is concerned), restricting the risk of erroneous predictions concerning the mechanical behavior of steel reinforcement.

Details

International Journal of Structural Integrity, vol. 11 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 November 2017

Nora Bouzeghaia, Abdelkader Mihi, Abdelkarim Aït-Mokhtar and Mahieddine Naoun

When concrete is manufactured, it can be instantaneously contaminated by chloride (Cl) ions or later by their intrusion from the environment. This work aims to study the…

226

Abstract

Purpose

When concrete is manufactured, it can be instantaneously contaminated by chloride (Cl) ions or later by their intrusion from the environment. This work aims to study the electrochemical behavior of the passive layer formed on the reinforcing steel surface in the presence of the same Cl ion concentration, with and without passivation time. This will, undoubtedly, affect the corrosion threshold values thereafter.

Design/methodology/approach

Electrochemical polarizations were carried out in two concrete pore solutions. The surfaces of samples immersed for 255 days in saturated Ca(OH)2 solution were examined with optical and scanning electron microscopy and Raman microspectroscopy.

Findings

Cl ion origins in reinforced concrete lead to different values of corrosion thresholds. The passive layer behaves like a physicochemical barrier, and corrosion occurs at higher NaCl concentration thresholds. The formed passive film on the steel surface shows differences in the chemical composition and the morphology. The results show a rich presence of hematite. Maghemite, lepidocrocite, akaganeite and goethite are also present in much lower concentrations. The Cl ion presence in fresh concrete at the beginning of the manufacture harms the good formation and the good stability of these oxides, leading to corrosion initiation.

Originality/value

This study contributes to a better understanding of the passive layer role, not only in reducing the corrosion rate value but also in reconsidering new Cl ion corrosion threshold values.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 February 2020

Utino Worabo Woju and A.S. Balu

Performance of the structure depends on design, construction, environment, utilization and reliability aspects. Other factors can be controlled by adopting proper design and…

Abstract

Purpose

Performance of the structure depends on design, construction, environment, utilization and reliability aspects. Other factors can be controlled by adopting proper design and construction techniques, but the environmental factors are difficult to control. Hence, mostly in practice, the environmental factors are not considered in the analysis and design appropriately; however, their impact on the performance of the structures is significant along with the design life. It is in this light that this paper aims to perform the time-dependent performance analysis of reinforced concrete structures majorly considering environmental factors.

Design/methodology/approach

To achieve the intended objective, a simply supported reinforced concrete beam was designed and detailed as per the Euro Code (EC2). The time-dependent design parameters, corrosion parameters, creep and shrinkage were identified through thorough literature review. The common empirical equations were modified to consider the identified parameters, and finally, the time-dependent performance of reinforced concrete beam was performed.

Findings

Findings indicate that attention has to be paid to appropriate consideration of the environmental effect on reinforced concrete structures. In that, the time-dependent performance of reinforced concrete beam significantly decreases with time due to corrosion of reinforcement steel, creep and shrinkage.

Originality/value

However, the Euro code, Ethiopian code and Indian code threat the exposure condition of reinforced concrete by providing corresponding concrete cover that retards the corrosion initiation time but does not eliminate environmental effects. The results of this study clearly indicate that the capacity of reinforced concrete structure degrades with time due to corrosion and creep, whereas the action on the structure due to shrinkage increases. Therefore, appropriate remedial measures have to be taken to control the defects of structures due to the environmental factors to overcome the early failure of the structure.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 27 January 2020

Raghu Babu U. and Kondraivendhan B.

Besides with a large amount of Na+ and Cl ions in seawater, the presence of Mg+2 and SO4−2 ions builds more complex corrosion mechanism. This paper aims to investigate the…

Abstract

Purpose

Besides with a large amount of Na+ and Cl ions in seawater, the presence of Mg+2 and SO4−2 ions builds more complex corrosion mechanism. This paper aims to investigate the corrosion of embedded reinforcement in concrete with the environment of both Cl and SO4−2 anions associated Mg+2 cation.

Design/methodology/approach

The concrete specimens were prepared by using ordinary Portland cement (OPC), and OPC blended with metakaolin (MK) for water to cementitious material ratio (w/cm) 0.48 and 0.51. The concrete mixes were contaminated with the addition of MgCl2 alone and combined MgCl2 and MgSO4 in mix water. Reinforcement corrosion was evaluated by half-cell potential and corrosion current densities (Icorr) at regular intervals. Moreover, the influence of cementitious material type, salt type and w/cm ratio on electrical resistivity of concrete was also investigated. The statistical models were developed for electrical resistivity as a function of calcium to aluminium content ratio, compressive strength, w/cm ratio and age of concrete.

Findings

Although the corrosion initiation time increases in the concomitant presence of MgSO4 and MgCl2 as internal source compared to MgCl2, Icorr values are higher in both OPC and MK blended concrete. However, electrical resistivity decreased with addition of MgSO4. MK blended concrete performed better with increased resistivity, corrosion initiation time and decreased Icorr values.

Originality/value

This study reports statistical distributions for scattered Icorr of rebar in different concrete mixtures. Stepwise regression models were developed for resistivity by considering the interactions among different variables, which would help to estimate the resistivity through basic information.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 January 2017

Shamsad Ahmad

This study aims to make an effort to develop a model to predict the residual flexural strength of reinforced concrete beams subjected to reinforcement corrosion.

Abstract

Purpose

This study aims to make an effort to develop a model to predict the residual flexural strength of reinforced concrete beams subjected to reinforcement corrosion.

Design/methodology/approach

For generating the required data to develop the model, a set of experimental variables was considered that included corrosion current density, corrosion duration, rebar diameter and thickness of concrete cover. A total of 28 sets of reinforced concrete beams of size 150 × 150 × 1,100 mm were cast, of which 4 sets of un-corroded beams were tested in four-point bend test as control beams and the remaining 24 sets of beams were subjected to accelerated rebar corrosion inducing different levels of corrosion current densities for different durations. Corroded beams were also tested in flexure, and test results of un-corroded and corroded beams were utilized to obtain an empirical model for estimating the residual flexural strength of beams for given corrosion current density, corrosion duration and diameter of the rebars.

Findings

Comparison of the residual flexural strengths measured experimentally for a set of corroded beams, reported in literature, with that predicted using the model proposed in this study indicates that the proposed model has a reasonably good accuracy.

Originality/value

The empirical model obtained under this work can be used as a simple tool to predict residual flexural strength of corroded beams using the input data that include rebar corrosion rate, corrosion duration after initiation and diameter of rebars.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 November 2006

L. Maldonado, M.A. Pech‐Canul and Safaa Alhassan

Reinforcing steel bars in concrete structures exposed to tropical marine atmospheres experience very high corrosion rates due to several environmental factors. The aim of this…

Abstract

Purpose

Reinforcing steel bars in concrete structures exposed to tropical marine atmospheres experience very high corrosion rates due to several environmental factors. The aim of this research was mainly to elucidate if zinc‐coated rebars may delay the onset of corrosion and/or extend the service life of infrastructure in the tropics, as the approach is promising in other atmospheres.

Design/methodology/approach

Hot‐dip zinc‐coated and plain steel rebars were embedded in concrete cylinders made with local aggregates and having four different water‐to‐cement ratios. Samples were exposed during 24 months at the marine breeze in a coastal site in the Gulf of Mexico. The corrosion behaviour of zinc‐coated and uncoated rebars was monitored by means of corrosion potential and linear polarization resistance techniques. Also, carbonation penetration and the chloride ingress were measured and correlated with the corrosion behaviour.

Findings

Only under the worst case conditions (concrete with 0.7 w/c ratio) did galvanized steel experience corrosion initiation. It was shown to resist higher chloride levels than uncoated steel and extended the onset of corrosion.

Originality/Value

The effectiveness of the zinc‐coated bar for corrosion control is controversial and its use mainly is supported by accelerated tests or application in cold or subtropical environments. This research showed the corrosion behaviour in an extremely corrosive tropical zone.

Details

Anti-Corrosion Methods and Materials, vol. 53 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 908