Search results

1 – 10 of 159
Article
Publication date: 10 November 2022

Nursyamsi Nursyamsi, Johannes Tarigan, Muhammad Aswin, Badorul Hisham Abu Bakar and Harianto Hardjasaputra

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading…

Abstract

Purpose

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading, inadequate design, poor work execution, fire, storm, earthquakes etc. Therefore, repairing and strengthening is one way to improve damaged structures, so that they can be reutilized. In this research, the use of an ultra high-performance fibre-reinforced concrete (UHPFRC) layer is proposed as a strengthening material to rehabilitate damaged-RC beams. Different strengthening schemes pertaining to the structural performance of the retrofitted RC beams due to the flexural load were investigated.

Design/methodology/approach

A total of 13 normal RC beams were prepared. All the beams were subjected to a four-point flexural test. One beam was selected as the control beam and tested to failure, whereas the remaining beams were tested under a load of up to 50% of the ultimate load capacity of the control beam. The damaged beams were then strengthened using a UHPFRC layer with two different schemes; strip-shape and U-shape schemes, before all the beams were tested to failure.

Findings

Based on the test results, the control beam and all strengthened beams failed in the flexural mode. Compared to the control beam, the damaged-RC beams strengthened using the strip-shape scheme provided an increase in the ultimate load capacity ranging from 14.50% to 43.48% (or an increase of 1.1450 to 1.4348 times), whereas for the U-shape scheme beams ranged from 48.70% to 149.37% (or an increase of 1.4870–2.4937 times). The U-shape scheme was more effective in rehabilitating the damaged-RC beams. The UHPFRC mixtures are workable, as well easy to place and cast into the formworks. Furthermore, the damaged-RC beams strengthened using strip-shape scheme and U-shape scheme generated ductility factors of greater than 4 and 3, respectively. According to Eurocode8, these values are suitable for seismically active regions. Therefore, the strengthened damaged-RC beams under this study can quite feasibly be used in such regions.

Research limitations/implications

Observations of crack patterns were not accompanied by measurements of crack widths due to the unavailability of a microcrack meter in the laboratory. The cost of the strengthening system application were not evaluated in this study, so the users should consider wisely related to the application of this method on the constructions.

Practical implications

Rehabilitation of the damaged-RC beams exhibited an adequate structural performance, where all strengthened RC beams fail in the flexural mode, as well as having increment in the failure load capacity and ductility. So, the used strengthening system in this study can be applied for the building construction in the seismic regions.

Social implications

Aside from equipment, application of this strengthening system need also the labours.

Originality/value

The use of sand blasting on the surfaces of the damaged-RC beams, as well as the application of UHPFRC layers of different thicknesses and shapes to strengthen the damaged-RC beams, provides a novel innovation in the strengthening of damaged-RC beams, which can be applicable to either bridge or building constructions.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 4 March 2024

Yuxuan Wu, Wenyuan Xu, Tianlai Yu and Yifan Wang

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the…

Abstract

Purpose

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the mechanical properties of the PUC and steel plate interface under the coupled action of temperature, normal force and tangential force were explored through shear tests and numerical simulations. An analytical model for bond-slip at the PUC/steel plate interface and a predictive model for the shear strength of the PUC/steel plate interface were developed.

Design/methodology/approach

The new shear test device designed in this paper overcomes the defect that the traditional oblique shear test cannot test the interface shear performance under the condition of fixed normal force. The universal testing machine (UTM) test machine was used to adjust the test temperature conditions. Combined with the results of the bond-slip test, the finite element simulation of the interface is completed by using the COHENSIVE unit to analyze the local stress distribution characteristics of the interface. The use of variance-based uncertainty analysis guaranteed the validity of the simulation.

Findings

The shear strength (τf) at the PUC-plate interface was negatively correlated with temperature while it was positively correlated with normal stress. The effect of temperature on the shear properties was more significant than that of normal stress. The slip corresponding to the maximum shear (D1) positively correlates with both temperature and normal stress. The interfacial shear ductility improves with increasing temperature.

Originality/value

Based on the PUC bond-slip measured curves, the relationship between bond stress and slip at different stages was analyzed, and the bond-slip analytical model at different stages was established; the model was defined by key parameters such as elastic ultimate shear stress τ0, peak stress τf and interface fracture energy Gf.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 April 2024

Long Liu, Lifeng Wang and Ziwang Xiao

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the…

Abstract

Purpose

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the steel plate at the bottom of RC beams, aiming to solve the problem of over-reinforced RC beams and improve the bearing capacity of RC beams without affecting their ductility.

Design/methodology/approach

In this paper, the finite element model of ESRB was established by ABAQUS. The results were compared with the experimental results of ESRB in previous studies and the reliability of the finite element model was verified. On this basis, parameters such as the width of the steel plate, thickness of the ECC layer, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar were analyzed by the verified finite element model. Based on the load–deflection curve of ESRB, ESRB was discussed in terms of ultimate bearing capacity and ductility.

Findings

The results demonstrate that when the width of the steel plate increases, the ultimate load of ESRB increases to 133.22 kN by 11.58% as well as the ductility index increases to 2.39. With the increase of the damage degree of the original beam, the ultimate load of ESRB decreases by 23.7%–91.09 kN and the ductility index decreases to 1.90. With the enhancement of the cross-sectional area of longitudinal tensile rebar, the ultimate bearing capacity of ESRB increases to 126.75 kN by 6.2% and the ductility index elevates to 2.30. Finally, a calculation model for predicting the flexural capacity of ESRB is proposed. The calculated results of the model are in line with the experimental results.

Originality/value

Based on the comparative analysis of the test results and numerical simulation results of 11 test beams, this investigation verified the accuracy and reliability of the finite element simulation from the aspects of load–deflection curve, characteristic load and failure mode. Furthermore, based on load–deflection curve, the effects of steel plate width, ECC layer thickness, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar on the ultimate bearing capacity and ductility of ESRB were discussed. Finally, a simplified method was put forward to further verify the effectiveness of ESRB through analytical calculation.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 November 2022

Buddhini Ginigaddara, Srinath Perera, Yingbin Feng, Payam Rahnamayiezekavat and Mike Kagioglou

Industry 4.0 is exacerbating the need for offsite construction (OSC) adoption, and this rapid transformation is pushing the boundaries of construction skills towards extensive…

Abstract

Purpose

Industry 4.0 is exacerbating the need for offsite construction (OSC) adoption, and this rapid transformation is pushing the boundaries of construction skills towards extensive modernisation. The adoption of this modern production strategy by the construction industry would redefine the position of OSC. This study aims to examine whether the existing skills are capable of satisfying the needs of different OSC types.

Design/methodology/approach

A critical literature review evaluated the impact of transformative technology on OSC skills. An existing industry standard OSC skill classification was used as the basis to develop a master list that recognises emerging and diminishing OSC skills. The master list recognises 67 OSC skills under six skill categories: managers, professionals, technicians and trade workers, clerical and administrative workers, machinery operators and drivers and labourers. The skills data was extracted from a series of 13 case studies using document reviews and semi-structured interviews with project stakeholders.

Findings

The multiple case study evaluation recognised 13 redundant skills and 16 emerging OSC skills such as architects with building information modelling and design for manufacture and assembly knowledge, architects specialised in design and logistics integration, advanced OSC technical skills, factory operators, OSC estimators, technicians for three dimensional visualisation and computer numeric control operators. Interview findings assessed the current state and future directions for OSC skills development. Findings indicate that the prevailing skills are not adequate to readily relocate construction activities from onsite to offsite.

Originality/value

To the best of the authors’ knowledge, this research is one of the first studies that recognises the major differences in skill requirements for non-volumetric and volumetric OSC types.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 30 January 2024

Kuleni Fekadu Yadeta, Sudath C. Siriwardane, Tesfaye Alemu Mohammed and Hirpa G. Lemu

Incorporating pre-existing crack in service life prediction of reinforced concrete structures subjected to corrosion is crucial for accurate assessment, realistic modelling and…

Abstract

Purpose

Incorporating pre-existing crack in service life prediction of reinforced concrete structures subjected to corrosion is crucial for accurate assessment, realistic modelling and effective decision-making in terms of maintenance and repair strategies.

Design/methodology/approach

An accelerated corrosion test was conducted by using impressed current method on cylindrical specimens with varying cover thickness and crack width. Mechanical properties of the specimens were evaluated by tensile tests.

Findings

The results show that, the pre-cracked samples exhibited shorter concrete cover cracking times, particularly with wider cracks when compared to the uncracked samples. Moreover, the load-bearing capacity of the reinforcement bars decreased owing to the pre-cracks, causing structural deflection and a shortened yield plateau. However, the ductility index remained consistent across all sample types, implying that the concrete had good overall ductility. Comparing the results of the non-corroded rebar and corroded rebar samples, the maximum reduction in the yield load was 25.22%, whereas the maximum reduction in the ultimate load was 26.23%. The simple mathematical model proposed in this study provides a reliable method for predicting the chloride ion diffusion coefficient in cracked concrete of existing reinforced concrete structures.

Originality/value

A simple mathematical model was proposed for evaluation of the equivalent chloride ion diffusion coefficient considering crack width, average crack spacing and crack extending lengths for cracked reinforced concrete structures, which is used to incorporate existing crack in service life prediction models.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 16 April 2024

Shilong Zhang, Changyong Liu, Kailun Feng, Chunlai Xia, Yuyin Wang and Qinghe Wang

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction…

Abstract

Purpose

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction method safely, real-time monitoring of the bridge rotation process is required to ensure a smooth swivel operation without collisions. However, the traditional means of monitoring using Electronic Total Station tools cannot realize real-time monitoring, and monitoring using motion sensors or GPS is cumbersome to use.

Design/methodology/approach

This study proposes a monitoring method based on a series of computer vision (CV) technologies, which can monitor the rotation angle, velocity and inclination angle of the swivel construction in real-time. First, three proposed CV algorithms was developed in a laboratory environment. The experimental tests were carried out on a bridge scale model to select the outperformed algorithms for rotation, velocity and inclination monitor, respectively, as the final monitoring method in proposed method. Then, the selected method was implemented to monitor an actual bridge during its swivel construction to verify the applicability.

Findings

In the laboratory study, the monitoring data measured with the selected monitoring algorithms was compared with those measured by an Electronic Total Station and the errors in terms of rotation angle, velocity and inclination angle, were 0.040%, 0.040%, and −0.454%, respectively, thus validating the accuracy of the proposed method. In the pilot actual application, the method was shown to be feasible in a real construction application.

Originality/value

In a well-controlled laboratory the optimal algorithms for bridge swivel construction are identified and in an actual project the proposed method is verified. The proposed CV method is complementary to the use of Electronic Total Station tools, motion sensors, and GPS for safety monitoring of swivel construction of bridges. It also contributes to being a possible approach without data-driven model training. Its principal advantages are that it both provides real-time monitoring and is easy to deploy in real construction applications.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 March 2024

Zhikun Ding, Wanqi Nie, Vivian W.Y. Tam and Chethana Illankoon

The preferences and adoption of recycled materials by consumers are subject to a variety of factors, such as enablers and barriers. Despite this, there exists a paucity of…

Abstract

Purpose

The preferences and adoption of recycled materials by consumers are subject to a variety of factors, such as enablers and barriers. Despite this, there exists a paucity of research concerning stakeholders' perceived value and real purchase decision towards recycled products. Consequently, this research study aims to fill this gap by investigating stakeholders' perceived value of recycled products derived from construction and demolition (C&D) waste and its effect on purchase decisions.

Design/methodology/approach

Research data were collected from 219 valid questionnaires completed by Chinese stakeholders. Structural equation modeling (SEM) was then employed to test eight hypotheses.

Findings

The results show intrinsic cue (materials) and extrinsic cue (brand) influence the stakeholders’ judgment on C&D waste recycled products’ value and then their purchase intention. However, cues such as quality, word-of-mouth, price, policy and advertised have not play a significant role in practice.

Originality/value

This research study verified the significance of brand and material cues on decision making for purchasing C&D waste recycled products, providing new insights to policy making to enhance the uptake of C&D waste recycled products in construction industry.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 15 April 2024

Tennakoon Mudiyanselage Maheshi Pabasara Tennakoon, Nicholas Chileshe, Raufdeen Rameezdeen, J. Jorge Ochoa and Aparna Samaraweera

Offsite construction (OC) is an efficient method to reduce waste in the construction industry from a circular economy perspective. Yet, its uptake is subdued by the ambiguities…

Abstract

Purpose

Offsite construction (OC) is an efficient method to reduce waste in the construction industry from a circular economy perspective. Yet, its uptake is subdued by the ambiguities around its supply chain. Hence, the purpose of this study is twofold: to identify the OC project delivery models, the limitations in their procurement approach to facilitate the resilience of the supply chain and interventions to promote supply chain resilience (SCR) and to identify the gaps in the existing procurement process and propose further research areas that implement strategies to improve SCR.

Design/methodology/approach

The study was conducted as a systematic literature review. In total, 41 peer-reviewed research papers published between 2013 and 2023 were shortlisted through the preferred reporting items for systematic reviews and meta-analysis guidelines. A descriptive analysis was conducted, followed by a thematic analysis.

Findings

The descriptive analysis reveals that the emphasis on digitising OC has shifted to transforming the business model, procurement and supply chain with a human-centric view. In thematic analysis, the predictability of the SC partners and the probabilities of evaluating the prospects are revealed as arbitrary characteristics in the current procurement strategies. Rewarding collaborative relationships among SC partners and incorporating provisions to postpone the module delivery are some interventions to promote flexibility. Drafting comprehensive and effective contracts that address transparency issues and facilitating the need for continuous development of capabilities through procurement are among the further research avenues proposed.

Originality/value

This study is a precursor demonstrating the potential of the procurement process to implement the decrees of SCR for better goal congruence of the OC supply chain.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 4 April 2024

Richard Kadan, Temitope Seun Omotayo, Prince Boateng, Gabriel Nani and Mark Wilson

This study aimed to address a gap in subcontractor management by focusing on previously unexplored complexities surrounding subcontractor management in developing countries. While…

Abstract

Purpose

This study aimed to address a gap in subcontractor management by focusing on previously unexplored complexities surrounding subcontractor management in developing countries. While past studies concentrated on selection and relationships, this study delved into how effective subcontractor management impacts project success.

Design/methodology/approach

This study used the Bayesian Network analysis approach, through a meticulously developed questionnaire survey refined through a piloting stage involving experienced industry professionals. The survey was ultimately distributed among participants based in Accra, Ghana, resulting in a response rate of approximately 63%.

Findings

The research identified diverse components contributing to subcontractor disruptions, highlighted the necessity of a clear regulatory framework, emphasized the impact of financial and leadership assessments on performance, and underscored the crucial role of main contractors in Integrated Project and Labour Cost Management with Subcontractor Oversight and Coordination.

Originality/value

Previous studies have not considered the challenges subcontractors face in projects. This investigation bridges this gap from multiple perspectives, using Bayesian network analysis to enhance subcontractor management, thereby contributing to the successful completion of construction projects.

Details

Journal of Financial Management of Property and Construction , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 13 October 2022

Arka Ghosh, Jemal Abawajy and Morshed Chowdhury

This study aims to provide an excellent overview of current research trends in the construction sector in digital advancements. It provides a roadmap to policymakers for the…

Abstract

Purpose

This study aims to provide an excellent overview of current research trends in the construction sector in digital advancements. It provides a roadmap to policymakers for the effective utilisation of emergent digital technologies and a need for a managerial shift for its smooth adoption.

Design/methodology/approach

A total of 3,046 peer-reviewed journal review articles covering Internet of Things (IoT), blockchain, building information modelling (BIM) and digital technologies within the construction sector were reviewed using scientometric mapping and weighted mind-map analysis techniques.

Findings

Prominent research clusters identified were: practice-factor-strategy, system, sustainability, BIM and construction worker safety. Leading countries, authors, institutions and their collaborative networks were identified with the UK, the USA, China and Australia leading this field of research. A conceptual framework for an IoT-based concrete lifecycle quality control system is provided.

Originality/value

The study traces the origins of the initial application of Industry 4.0 concepts in the construction field and reviews available literature from 1983 to 2021. It raises awareness of the latest developments and potential landscape realignment of the construction industry through digital technologies conceptual framework for an IoT-based concrete lifecycle quality control system is provided.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 159