Search results

1 – 10 of 230
Open Access
Article
Publication date: 22 April 2022

Marja G. Bertrand and Immaculate K. Namukasa

Certain researchers have expressed concerns about inequitable discipline representations in an integrated STEM/STEAM (science, technology, engineering, arts and mathematics) unit…

7456

Abstract

Purpose

Certain researchers have expressed concerns about inequitable discipline representations in an integrated STEM/STEAM (science, technology, engineering, arts and mathematics) unit that may limit what students gain in terms of depth of knowledge and understanding. To address this concern, the authors investigate the stages of integrated teaching units to explore the ways in which STEAM programs can provide students with a deeper learning experience in mathematics. This paper addresses the following question: what learning stages promote a deeper understanding and more meaningful learning experience of mathematics in the context of STEAM education?

Design/methodology/approach

The authors carried out a qualitative case study and collected the following data: interviews, lesson observations and analyses of curriculum documents. The authors took a sample of four different STEAM programs in Ontario, Canada: two at nonprofit organizations and two at in-school research sites.

Findings

The findings contribute to a curriculum and instructional model which ensures that mathematics curriculum expectations are more explicit and targeted, in both the learning expectations and assessment criteria, and essential to the STEAM learning tasks. The findings have implications for planning and teaching STEAM programs.

Originality/value

The authors derived four stages of the STEAM Maker unit or lesson from the analysis of data collected from the four sites, which the authors present in this paper. These four stages offer a model for a more robust integrated curriculum focusing on a deeper understanding of mathematics curriculum content.

Details

Journal of Research in Innovative Teaching & Learning, vol. 16 no. 2
Type: Research Article
ISSN: 2397-7604

Keywords

Open Access
Article
Publication date: 27 April 2020

Marja G. Bertrand and Immaculate K. Namukasa

Globally, interdisciplinary and transdisciplinary learning in schools has become an increasingly popular and growing area of interest for educational reform. This prompts…

38074

Abstract

Purpose

Globally, interdisciplinary and transdisciplinary learning in schools has become an increasingly popular and growing area of interest for educational reform. This prompts discussions about Science, Technology, Engineering, Arts and Mathematics (STEAM), which is shifting educational paradigms toward art integration in science, technology, engineering and mathematics (STEM) subjects. Authentic tasks (i.e. real-world problems) address complex or multistep questions and offer opportunities to integrate disciplines across science and arts, such as in STEAM. The main purpose of this study is to better understand the STEAM instructional programs and student learning offered by nonprofit organizations and by publicly funded schools in Ontario, Canada.

Design/methodology/approach

This study addresses the following research question: what interdisciplinary and transdisciplinary skills do students learn through different models of STEAM education in nonprofit and in-school contexts? We carried out a qualitative case study in which we conducted interviews, observations and data analysis of curriculum documents. A total of 103 participants (19 adults – director and instructors/teachers – and 84 students) participated in the study. The four STEAM programs comparatively taught both discipline specific and beyond discipline character-building skills. The skills taught included: critical thinking and problem solving; collaboration and communication; and creativity and innovation.

Findings

The main findings on student learning focused on students developing perseverance and adaptability, and them learning transferable skills.

Originality/value

In contrast to other research on STEAM, this study identifies both the enablers and the tensions. Also, we stress ongoing engagement with stakeholders (focus group), which has the potential to impact change in teaching and teacher development, as well as in related policies.

Open Access
Article
Publication date: 21 May 2020

Shuhua An

This study intended to provide such an opportunity to preservice teachers with a project-based learning (PBL) approach and an inquiry-based pedagogy to engage them in learning…

3266

Abstract

Purpose

This study intended to provide such an opportunity to preservice teachers with a project-based learning (PBL) approach and an inquiry-based pedagogy to engage them in learning science, technology, engineering and mathematics (STEM) knowledge and skills of integration with adding an art component to STEM as science, technology, engineering, arts and mathematics (STEAM) for K-8 children, and developing their own STEAM tasks. The purpose of this project was to explore how STEAM integration in mathematics methods courses influenced K-8 preservice teachers' disposition and knowledge of STEAM integration.

Design/methodology/approach

This project used a mixed-research design in data collection and analysis to examine the effects of using the STEAM integration on preservice teachers' knowledge and disposition. The preservice teachers in two EDEL 462 classes in Spring 2019 participated in STEAM learning and development in the inquiry process of four steps of STEAM integration. Data collection includes the pre- and postquestionnaires on teachers' knowledge and disposition.

Findings

The results in this study show that the STEAM integration in the mathematics methods courses engaged preservice teachers in four steps of the inquiry process of connection, collaboration, communication and evaluation for STEAM integration using PBL approach. The preservice teachers not only enhanced their disposition in attitude and confidence but also enhanced their knowledge of STEAM integration.

Research limitations/implications

The following conclusions can be drawn from the present study that integrating STEAM components in mathematics methods fosters preservice teachers' creativity, connection, communication, application and teamwork skills, and importantly, it enhances K-8 preservice teachers' productive dispositions and knowledge in STEAM integration.

Practical implications

The results of this study indicate that using math methods courses to engage preservice teachers in learning STEAM integration and designing authentic STEAM tasks in four steps enhanced preservice teachers' attitude and confidence that significantly related to their knowledge of STEAM integration.

Originality/value

These findings have significant implications for the understanding of how to prepare future teachers in STEAM integration in higher education.

Details

Journal of Research in Innovative Teaching & Learning, vol. 13 no. 1
Type: Research Article
ISSN: 2397-7604

Keywords

Open Access
Article
Publication date: 22 November 2019

Wu Chen, Xin Tang and Ting Mou

The purpose of this paper is to provide some references for teachers who use KidsProgram or other graphic programming tools platform for STEAM (science, technology, engineering…

3380

Abstract

Purpose

The purpose of this paper is to provide some references for teachers who use KidsProgram or other graphic programming tools platform for STEAM (science, technology, engineering, arts and mathematics) education at distance by game-based teaching. From the design of the STEAM class, teachers can know how to stimulate students’ interest in programming and cultivating their ability to innovate and solve practical problems more clearly with KidsProgram.

Design/methodology/approach

This paper will explain the teaching design from ten aspects and implement it in real class to see the result. The ten aspects are situations creation, knowledge popularization, raising problems, analyzing problems, concepts introduction, interface design, logic design, self-evaluation and mutual evaluation, teacher comments and extension and innovation. With the KidsProgram platform, this paper takes “The Missile Convey,” a sub-course of “Discovery Universe” as an example. Through the situation created by the teacher, students brainstorm the dangers that the earth may encounter in the universe and then learn relevant scientific knowledge. Next, students raise and analyze problems according to the situation under the guidance of the teacher. Through the interaction with teachers, students review the programming concepts and the usage of corresponding coding blocks needed for the project, like “random number.” They need to carry out interface design and logic design for the project, and complete the project. After that, the students use the self-evaluation form and the mutual evaluation form to modify and then show and share the projects to the in front of the class. After self-evaluation and peer evaluation, the teacher will make a final summary evaluation and make some suggestions for improvement. From the students’ programming productions and the interviews with them, the teaching result can be known.

Findings

With elaborate teaching design and appropriate teaching strategies, students can flexibly use multi-disciplinary knowledge of science, technology, engineering, art and mathematics to solve problems in the process of creation, which is conducive to the cultivation and improvement of students’ comprehensive quality on KidsProgram classroom, under the guidance of STEAM education. In other words, in this class, students need to use engineering thinking to plan the whole project based on the understanding of scientific principles, design interfaces with artistic ideas, use mathematical knowledge for logical operations, and gradually solve technical problems with the above knowledge or methods in a comprehensive way.

Originality/value

The KidsProgram is a leading graphical programming tool platform in China in recent years. It deeply reconstructs the concept of Scratch designed by MIT. Graphic programming, a method of programming by dragging and dropping blocks containing natural languages, is different from traditional code programming. In this paper, the visualized cases in the class will be demonstrated in the “interface design” and “logic design.” This paper designs a course in STEAM education at distance via KidsProgram, hoping to provide some reference for other research on teaching of graphical programming tools.

Details

Asian Association of Open Universities Journal, vol. 14 no. 2
Type: Research Article
ISSN: 2414-6994

Keywords

Open Access
Article
Publication date: 10 January 2023

Anna Trubetskaya, Olivia McDermott and Seamus McGovern

This article aims to optimise energy use and consumption by integrating Lean Six Sigma methodology with the ISO 50001 energy management system standard in an Irish dairy plant…

2873

Abstract

Purpose

This article aims to optimise energy use and consumption by integrating Lean Six Sigma methodology with the ISO 50001 energy management system standard in an Irish dairy plant operation.

Design/methodology/approach

This work utilised Lean Six Sigma methodology to identify methods to measure and optimise energy consumption. The authors use a single descriptive case study in an Irish dairy as the methodology to explain how DMAIC was applied to reduce energy consumption.

Findings

The replacement of heavy oil with liquid natural gas in combination with the new design of steam boilers led to a CO2 footprint reduction of almost 50%.

Practical implications

A further longitudinal study would be useful to measure and monitor the energy management system progress and carry out more case studies on LSS integration with energy management systems across the dairy industry.

Originality/value

The novelty of this study is the application of LSS in the dairy sector as an enabler of a greater energy-efficient facility, as well as the testing of the DMAIC approach to meet a key objective for ISO 50001 accreditation.

Details

The TQM Journal, vol. 35 no. 9
Type: Research Article
ISSN: 1754-2731

Keywords

Open Access
Article
Publication date: 1 February 2024

Jo Trowsdale and Richard Davies

There is a lack of clarity about what constitutes Science, Technology, Engineering, Arts and Mathematics (STEAM) education and what the arts contribute. In this paper the authors…

Abstract

Purpose

There is a lack of clarity about what constitutes Science, Technology, Engineering, Arts and Mathematics (STEAM) education and what the arts contribute. In this paper the authors discuss a distinct model, theorised from a five-year study of a particular, innovative STEAM education project (The Imagineerium), and developed by the researchers through working with primary school teachers in England within a second project (Teach-Make). The paper examines how teachers implemented this model, the Trowsdale art-making model for education (the TAME), and reflected on its value and positive impact on their planning and pedagogy.

Design/methodology/approach

The paper draws on two studies: firstly, a five-year, mixed methods, participative study of The Imagineerium and secondly a participative and collaborative qualitative study of Teach-Make.

Findings

Study of The Imagineerium showed strong positive educational outcomes for pupils and an appetite from teachers to translate the approach to the classroom. The Teach-Make project showed that with a clear curriculum model (the TAME) and professional development to improve teachers' planning and active pedagogical skills, they could design and deliver “imagineerium-like” schemes of work in their classrooms. Teachers reported a positive impact on both their own approach to supporting learning, as well as pupil progression and enjoyment.

Originality/value

The paper argues that the TAME, a consolidation of research evidence from The Imagineerium and developed through Teach-Make, offers both a distinctive and effective model for STEAM and broader education, one that is accessible to, valued by and manageable for teachers.

Details

Journal of Research in Innovative Teaching & Learning, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2397-7604

Keywords

Open Access
Article
Publication date: 3 February 2022

Shian Li, Zhi Yang, Yihui Liu, Qiuwan Shen, Guogang Yang and Bengt Ake Sunden

The purpose of this paper is to investigate the heat and mass transport characteristics in microchannel reactors with non-uniform catalyst distributions.

Abstract

Purpose

The purpose of this paper is to investigate the heat and mass transport characteristics in microchannel reactors with non-uniform catalyst distributions.

Design/methodology/approach

A two-dimensional model is developed to study the heat and mass transport characteristics in microchannel reactors. The heat and mass transport processes in the microchannel reactors with non-uniform catalyst distribution in the catalytic combustion channel are also studied.

Findings

The simulated results are compared in terms of the distributions of species mole fraction, temperature and reaction rate for the conventional and new designed reactors. It is found that the chemical reaction, heat and mass transport processes are significantly affected and the maximum temperature in the reactor is also greatly reduced when a non-uniform catalyst distribution is applied in the combustion catalyst layer.

Practical implications

This study can improve the understanding of the transportation characteristics in microchannel reactors with non-uniform catalyst distributions and provide guidance for the design of microchannel reactors.

Originality/value

The design of microchannel reactors with non-uniform catalyst distributions can be used in methane steam reforming to reduce the maximum temperature inside the reactor.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 28 November 2022

Zehui Zhan, Wenyao Shen, Zhichao Xu, Shijing Niu and Ge You

This study aims to provide a comprehensive review and bibliometric analysis of the literature in the field of science, technology, engineering and mathematics (STEM) education…

2497

Abstract

Purpose

This study aims to provide a comprehensive review and bibliometric analysis of the literature in the field of science, technology, engineering and mathematics (STEM) education over the past 15 years, with a specific focus on global distribution and research trends.

Design/methodology/approach

This study collected 1,718 documents from the Web of Science (WOS) database and analyzed their timeline distribution, geographical distribution, research topics, subject areas, learning stages and citation burst using a bibliometric approach with VOSviewer and Citespace.

Findings

Results indicated that: overall, STEM education has increasingly gained scholarly attention and is developing diversely by emphasizing interdisciplinary, cross-domain and regional collaboration. In terms of global collaboration, a collaborative network with the USA in the center is gradually expanding to a global scope. In terms of research themes, four key topics can be outlined including educational equity, pedagogy, empirical effects and career development. Social, cultural and economic factors influence the way STEM education is implemented across different countries. The developed Western countries highlighted educational equity and disciplinary integration, while the developing countries tend to focus more on pedagogical practices. As for research trends, eastern countries are emphasizing humanistic leadership and cultural integration in STEM education; in terms of teachers’ professional development, teachers’ abilities of interdisciplinary integration, technology adoption and pedagogy application are of the greatest importance. With regards to pedagogy, the main focus is for developing students’ higher-order abilities. In terms of education equity, issues of gender and ethnicity were still the hottest topics, while the unbalanced development of STEM education across regions needs further research.

Originality/value

This study provides a global landscape of STEM education along the timeline, which illustrates the yearly progressive development of STEM education and indicates the future trends.

Details

Asia Pacific Journal of Innovation and Entrepreneurship, vol. 16 no. 2
Type: Research Article
ISSN: 2071-1395

Keywords

Open Access
Article
Publication date: 16 December 2021

Laura Gonzalez

Academic innovation strives to benefit from an ample talent pool, and entrepreneurship and research competitions constitute an integral part of the effort. This prompts…

Abstract

Purpose

Academic innovation strives to benefit from an ample talent pool, and entrepreneurship and research competitions constitute an integral part of the effort. This prompts discussions about how to optimize the impact of interdisciplinary learning, especially for less-traditional participants. The main purpose of this article is to describe how synergies between research and business plan competitions can facilitate inclusive engagement and enhanced development of transferable skills.

Design/methodology/approach

A case illustration addresses the following questions: (1) what skills can be enhanced through a single project toward parallel participation in research and business plan competitions? (2) How can synergies between research and business plan competitions support more inclusive student development? The case illustration outlines the process and outcomes of an initiative with three first-gen business students, two female and two international.

Findings

The case illustration describes how synergies and alignments of deadliness between research and business plan competitions enhanced the learning process by facilitating more opportunities to showcase learning and receive feedback. In addition, the parallel preparation facilitated student inclusion by providing purposeful authentic practice in a project envisioned by the students. As a result of the 2019 learning experience, students and their employers continue to value in 2021 the effective development of transferable skills.

Originality/value

Previous studies examine independently entrepreneurship initiatives, science technology engineering arts and mathematics (STEAM) initiatives, transferable skills and pedagogy that support inclusive education. This manuscript describes the option of synergies between research and entrepreneurship competitions to support more inclusive student development. In addition, it provides recommendations for impact when scaling-up synergies.

Details

Journal of Research in Innovative Teaching & Learning, vol. 15 no. 2
Type: Research Article
ISSN: 2397-7604

Keywords

Open Access
Article
Publication date: 15 September 2017

Jeroen Pruyn

The purpose of this paper is to investigate whether the headlined eco-bulkers ordered in 2012 and 2013 are posing a threat to the less-efficient ships ordered at the end of the…

1448

Abstract

Purpose

The purpose of this paper is to investigate whether the headlined eco-bulkers ordered in 2012 and 2013 are posing a threat to the less-efficient ships ordered at the end of the boom in 2008 and 2009.

Design/methodology/approach

This paper will first investigate the drivers for the interest in such low-emission, low-speed bulker as well as the more general history of bulker designs. This is followed by a study on the vessels delivered between 2005 and 2014, based on eight parameters representing fuel efficiency, speed and hydromechanics properties. Within these results, evidence is sought for a significant change in the qualities of the vessels delivered after the last boom.

Findings

The data showed that at least till present, no significant changes could be discovered between 2014 and the earlier years. This indicates that either because of the long delivery times at the end of the boom, such vessels are still to be delivered, or that they were not ordered in an amount large enough to change the trend. For the future, this fact and the changes in vessel design resulting from the introduction of the energy efficiency design index (EEDI) in 2017 and the large fluctuations in the fuel prices will be interesting to keep monitoring the developments in the eight studied parameters.

Originality/value

This paper extends (in time) and improves (number of variables studied) a number of earlier studies on average qualities of the world fleet. It studies both the composition and the changes in average properties of the ships produced each year. It allowed the author to discover and explain the trends that would not have been evident when studying ships as single units or as the result of a business opportunity optimisation. Most important of which is the fact that, on average, ships produced are optimised for the current economic conditions and are not taken into consideration for future trends and scenarios.

Details

Maritime Business Review, vol. 2 no. 3
Type: Research Article
ISSN: 2397-3757

Keywords

1 – 10 of 230