Search results

1 – 10 of 58
Article
Publication date: 23 January 2023

Roshith Mittakolu, Sarma L. Rani and Dilip Srinivas Sundaram

A higher-order implicit shock-capturing scheme is presented for the Euler equations based on time linearization of the implicit flux vector rather than the residual vector.

Abstract

Purpose

A higher-order implicit shock-capturing scheme is presented for the Euler equations based on time linearization of the implicit flux vector rather than the residual vector.

Design/methodology/approach

The flux vector is linearized through a truncated Taylor-series expansion whose leading-order implicit term is an inner product of the flux Jacobian and the vector of differences between the current and previous time step values of conserved variables. The implicit conserved-variable difference vector is evaluated at cell faces by using the reconstructed states at the left and right sides of a cell face and projecting the difference between the left and right states onto the right eigenvectors. Flux linearization also facilitates the construction of implicit schemes with higher-order spatial accuracy (up to third order in the present study). To enhance the diagonal dominance of the coefficient matrix and thereby increase the implicitness of the scheme, wave strengths at cell faces are expressed as the inner product of the inverse of the right eigenvector matrix and the difference in the right and left reconstructed states at a cell face.

Findings

The accuracy of the implicit algorithm at Courant–Friedrichs–Lewy (CFL) numbers greater than unity is demonstrated for a number of test cases comprising one-dimensional (1-D) Sod’s shock tube, quasi 1-D steady flow through a converging-diverging nozzle, and two-dimensional (2-D) supersonic flow over a compression corner and an expansion corner.

Practical implications

The algorithm has the advantage that it does not entail spatial derivatives of flux Jacobian so that the implicit flux can be readily evaluated using Roe’s approximate Jacobian. As a result, this approach readily facilitates the construction of implicit schemes with high-order spatial accuracy such as Roe-MUSCL.

Originality/value

A novel finite-volume-based higher-order implicit shock-capturing scheme was developed that uses time linearization of fluxes at cell interfaces.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 July 2023

Jianhang Xu, Peng Li and Yiren Yang

The paper aims to develop an efficient data-driven modeling approach for the hydroelastic analysis of a semi-circular pipe conveying fluid with elastic end supports. Besides the…

Abstract

Purpose

The paper aims to develop an efficient data-driven modeling approach for the hydroelastic analysis of a semi-circular pipe conveying fluid with elastic end supports. Besides the structural displacement-dependent unsteady fluid force, the steady one related to structural initial configuration and the variable structural parameters (i.e. the variable support stiffness) are considered in the modeling.

Design/methodology/approach

The steady fluid force is treated as a pipe preload, and the elastically supported pipe-fluid model is dealt with as a prestressed hydroelastic system with variable parameters. To avoid repeated numerical simulations caused by parameter variation, structural and hydrodynamic reduced-order models (ROMs) instead of conventional computational structural dynamics (CSD) and computational fluid dynamics (CFD) solvers are utilized to produce data for the update of the structural, hydrodynamic and hydroelastic state-space equations. Radial basis function neural network (RBFNN), autoregressive with exogenous input (ARX) model as well as proper orthogonal decomposition (POD) algorithm are applied to modeling these two ROMs, and a hybrid framework is proposed to incorporate them.

Findings

The proposed approach is validated by comparing its predictions with theoretical solutions. When the steady fluid force is absent, the predictions agree well with the “inextensible theory”. The pipe always loses its stability via out-of-plane divergence first, regardless of the support stiffness. However, when steady fluid force is considered, the pipe remains stable throughout as flow speed increases, consistent with the “extensible theory”. These results not only verify the accuracy of the present modeling method but also indicate that the steady fluid force, rather than the extensibility of the pipe, is the leading factor for the differences between the in- and extensible theories.

Originality/value

The steady fluid force and the variable structural parameters are considered in the data-driven modeling of a hydroelastic system. Since there are no special restrictions on structural configuration, steady flow pattern and variable structural parameters, the proposed approach has strong portability and great potential application for other hydroelastic problems.

Article
Publication date: 25 January 2024

Mauro Minervino and Renato Tognaccini

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb…

Abstract

Purpose

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb vector-based far-field methods are used at the scope, and the paper starts with extending recent steady compressible formulas to the unsteady regime.

Design/methodology/approach

Exact vortical force formulas are derived considering inertial or non-inertial frames, viscous or inviscid flows, fixed or moving bodies. Numerical applications to a NACA0012 airfoil oscillating in pure plunging motion are illustrated, considering subsonic and transonic flow regimes. The total force accuracy and sensitivity to the control volume size is first analysed, then the axial force is decomposed and results are compared to the inviscid force (thrust) and to the steady force (drag).

Findings

Two total axial force decompositions in thrust and drag contributions are proposed, providing satisfactory results. An additional force decomposition is also formulated, which is independent of the arbitrary pole appearing in vortical formulas. Numerical inaccuracies encountered in inertial reference frames are eliminated, and the extended formulation also allows obtaining an accurate force prediction in presence of shock waves.

Originality/value

No thrust/drag bookkeeping methodology was actually available for oscillating airfoils in viscous and compressible flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 October 2023

Haytem Troug and Ernil Sabaj

Despite being a flexible tool that can address several macroeconomic issues, Dynamic Stochastic General Equilibrium (DSGE) models have been rarely used to analyse the interaction…

Abstract

Purpose

Despite being a flexible tool that can address several macroeconomic issues, Dynamic Stochastic General Equilibrium (DSGE) models have been rarely used to analyse the interaction between monetary and fiscal policy until the post-financial crisis, leaving a gap in the analysis of how government consumption affects the transmission mechanism of monetary policy. This motivates this paper to analyse how government consumption affects the dynamics of a small open economy, once the former is included in a non-separable form to the utility function. To the best of the authors' knowledge, this issue has not been addressed by the literature, and the authors aim to do so in this paper.

Design/methodology/approach

A standard New Keynesian model for a small open economy is used to allow for the presence of non-separable government consumption in the utility function. The model is supported by panel regressions.

Findings

The inclusion of Government consumption dampens the transmission mechanism of monetary policy. The degree of openness dampens the crowding out effect of fiscal policy to monetary policy, as the exchange rate channel empowers it. Empirical estimates for 35 OECD countries support the theoretical findings of the model.

Originality/value

The effect of government consumption on the transmission mechanism of MP has not been addressed in the literature. This paper contributes to the literature by addressing this issue.

Highlights:

  • • The inclusion of Government consumption dampens the transmission mechanism of monetary policy.

  • • The degree of openness alleviates the crowding out effect of fiscal policy to monetary policy, as the exchange rate channel empowers it.

  • • Empirical estimates for 35 OECD countries support the theoretical findings of the model.

• The inclusion of Government consumption dampens the transmission mechanism of monetary policy.

• The degree of openness alleviates the crowding out effect of fiscal policy to monetary policy, as the exchange rate channel empowers it.

• Empirical estimates for 35 OECD countries support the theoretical findings of the model.

Details

Journal of Economic Studies, vol. 51 no. 1
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 2 August 2023

Bowen Fan, Keke Yuan, Wei Chen, Shemiao Qi, Yi Liu and Heng Liu

The purpose of this study is to present a numerical model for scratched tilting-pad bearings (STPBs) with nonuniform grids. In addition, the model is used to reveal the effects of…

Abstract

Purpose

The purpose of this study is to present a numerical model for scratched tilting-pad bearings (STPBs) with nonuniform grids. In addition, the model is used to reveal the effects of the structural parameters of bearings on the dynamic characteristics of STPBs under impact loading.

Design/methodology/approach

By combining the Reynolds equation, the flow balance equation and the assumption of adiabatic bearings and shafts, a thermo-hydrodynamic model with nonuniform grids of scratched journal bearings was built. Describing the motion of the shaft using the Euler method and introducing the pad-tilting-angle modification equation, a dynamic model of STPBs was established.

Findings

The occurrence of scratches in tilting-pad bearings yields great sensitivity to impact loading. Less width-to-diameter ratio and larger clearance ratio reduce the minimum film thickness and enlarge the maximum film pressure, which may lead to bearing collision or abrasion. Moreover, STPBs with larger clearance ratios take longer to recover from impact loading.

Originality/value

This work is original and a valuable reference for the analysis of the dynamic characteristics of STPBs. The effects of other factors on the dynamic characteristics of STPBs can be further investigated based on this model.

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2023

Javad Masrour, Seyed Hossein Sadati and Morteza Shahravi

This study aims to simulate gust effects on the aeroelastic behavior of a flexible aircraft. The dynamic response of the system for different discreet gust excitations is obtained…

Abstract

Purpose

This study aims to simulate gust effects on the aeroelastic behavior of a flexible aircraft. The dynamic response of the system for different discreet gust excitations is obtained using numerical simulations.

Design/methodology/approach

Coupled dynamics, including rigid and flexible body coordinates, are considered for modeling the dynamic behavior of the aircraft. Wing is considered flexible and other parts are considered rigid. Wing is modeled with nonlinear Euler Bernoulli beam. Moreover, unsteady aerodynamics based on the Wagner function are used for aerodynamic loading, and the results are compared with those of quasi-steady aerodynamics.

Findings

Von Kármán continuous gust is applied to this aircraft. In addition, the discrete “1- cosine” gust with different gust lengths is applied to the aircraft, and the maximum and minimum accelerations are computed. It is shown that the nonlinear modeling of the system represents the actual behavior and causes limit cycle oscillation phenomena.

Originality/value

This methodology can yield a relatively simple dynamic model for high aspect ratio aircrafts to provide insights into the vehicles’ dynamics, which can be available early in the design cycle.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 July 2022

Xiaomin Zhao, Fuminobu Ozaki, Takeo Hirashima, Kei Kimura, Yukio Murakami, Jun-ichi Suzuki and Naoya Yotsumoto

The main purpose of this study was to propose theoretical calculation models to evaluate the theoretical bending strengths of welded wide-flange section steel beams with local…

Abstract

Purpose

The main purpose of this study was to propose theoretical calculation models to evaluate the theoretical bending strengths of welded wide-flange section steel beams with local buckling at elevated temperatures.

Design/methodology/approach

Steady-state tests using various test parameters, including width-thickness ratios (Class 2–4) and specimen temperatures (ambient temperature, 400, 500, 600, 700, and 800°C), were performed on 18 steel beam specimens using roller supports to examine the maximum bending moment and bending strength after local buckling. A detailed calculation model (DCM) based on the equilibrium of the axial force in the cross-section and a simple calculation model (SCM) for a practical fire-resistant design were proposed. The validity of the calculation models was verified using the bending test results.

Findings

The strain concentration at the local buckling cross-section was mitigated in the elevated-temperature region, resulting in a small bending moment degradation after local buckling. The theoretical bending strengths after local buckling, evaluated from the calculation models, were in good agreement with the test results at elevated temperatures.

Originality/value

The effect of local buckling on the bending behaviour after the maximum bending strength in high-temperature regions was quantified. Two types of calculation models were proposed to evaluate the theoretical bending strength after local buckling.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 8 June 2023

Tadej Dobravec, Boštjan Mavrič, Rizwan Zahoor and Božidar Šarler

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Abstract

Purpose

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Design/methodology/approach

A preconditioned phase-field model for dendritic solidification of a pure supercooled melt is solved by the strong-form space-time adaptive approach based on dynamic quadtree domain decomposition. The domain-type space discretisation relies on monomial augmented polyharmonic splines interpolation. The forward Euler scheme is used for time evolution. The boundary-type meshless method solves the Stokes flow around the dendrite based on the collocation of the moving and fixed flow boundaries with the regularised Stokes flow fundamental solution. Both approaches are iteratively coupled at the moving solid–liquid interface. The solution procedure ensures computationally efficient and accurate calculations. The novel approach is numerically implemented for a 2D case.

Findings

The solution procedure reflects the advantages of both meshless methods. Domain one is not sensitive to the dendrite orientation and boundary one reduces the dimensionality of the flow field solution. The procedure results agree well with the reference results obtained by the classical numerical methods. Directions for selecting the appropriate free parameters which yield the highest accuracy and computational efficiency are presented.

Originality/value

A combination of boundary- and domain-type meshless methods is used to simulate dendritic solidification with the influence of fluid flow efficiently.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 26 July 2023

Fong Yew Leong, Dax Enshan Koh, Wei-Bin Ewe and Jian Feng Kong

This study aims to assess the use of variational quantum imaginary time evolution for solving partial differential equations using real-amplitude ansätze with full circular…

1119

Abstract

Purpose

This study aims to assess the use of variational quantum imaginary time evolution for solving partial differential equations using real-amplitude ansätze with full circular entangling layers. A graphical mapping technique for encoding impulse functions is also proposed.

Design/methodology/approach

The Smoluchowski equation, including the Derjaguin–Landau–Verwey–Overbeek potential energy, is solved to simulate colloidal deposition on a planar wall. The performance of different types of entangling layers and over-parameterization is evaluated.

Findings

Colloidal transport can be modelled adequately with variational quantum simulations. Full circular entangling layers with real-amplitude ansätze lead to higher-fidelity solutions. In most cases, the proposed graphical mapping technique requires only a single bit-flip with a parametric gate. Over-parameterization is necessary to satisfy certain physical boundary conditions, and higher-order time-stepping reduces norm errors.

Practical implications

Variational quantum simulation can solve partial differential equations using near-term quantum devices. The proposed graphical mapping technique could potentially aid quantum simulations for certain applications.

Originality/value

This study shows a concrete application of variational quantum simulation methods in solving practically relevant partial differential equations. It also provides insight into the performance of different types of entangling layers and over-parameterization. The proposed graphical mapping technique could be valuable for quantum simulation implementations. The findings contribute to the growing body of research on using variational quantum simulations for solving partial differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Book part
Publication date: 4 September 2023

Stephen E. Spear and Warren Young

Abstract

Details

Overlapping Generations: Methods, Models and Morphology
Type: Book
ISBN: 978-1-83753-052-6

1 – 10 of 58