Search results

1 – 10 of 12
Article
Publication date: 2 August 2022

Aleksandar Vasilev

This paper explores the effects of fiscal policy in an economy with reciprocity in labor relations and fair wages, consumption taxes and a common income tax rate in place.

Abstract

Purpose

This paper explores the effects of fiscal policy in an economy with reciprocity in labor relations and fair wages, consumption taxes and a common income tax rate in place.

Design/methodology/approach

To this end, a dynamic general-equilibrium model with government sector is calibrated to Bulgarian data (1999–2018). Two regimes are compared and contrasted – the exogenous (observed) vs optimal policy (Ramsey) case. The focus of the paper is on the relative importance of consumption vs income taxation, as well as on the provision of utility-enhancing public services. Bulgarian economy was chosen as a case study due to its major dependence on consumption taxation as a source of tax revenue.

Findings

(1) The optimal steady-state income tax rate is zero; (2) the benevolent Ramsey planner provides the optimal amount of the utility-enhancing public services, which are now three times lower; (3) the optimal steady-state consumption tax needed to finance the optimal level of government spending is 18:7%.

Originality/value

This is the first study on optimal fiscal policy with reciprocity in labor relations.

Details

Journal of Economic and Administrative Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1026-4116

Keywords

Article
Publication date: 25 January 2024

Mauro Minervino and Renato Tognaccini

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb…

Abstract

Purpose

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb vector-based far-field methods are used at the scope, and the paper starts with extending recent steady compressible formulas to the unsteady regime.

Design/methodology/approach

Exact vortical force formulas are derived considering inertial or non-inertial frames, viscous or inviscid flows, fixed or moving bodies. Numerical applications to a NACA0012 airfoil oscillating in pure plunging motion are illustrated, considering subsonic and transonic flow regimes. The total force accuracy and sensitivity to the control volume size is first analysed, then the axial force is decomposed and results are compared to the inviscid force (thrust) and to the steady force (drag).

Findings

Two total axial force decompositions in thrust and drag contributions are proposed, providing satisfactory results. An additional force decomposition is also formulated, which is independent of the arbitrary pole appearing in vortical formulas. Numerical inaccuracies encountered in inertial reference frames are eliminated, and the extended formulation also allows obtaining an accurate force prediction in presence of shock waves.

Originality/value

No thrust/drag bookkeeping methodology was actually available for oscillating airfoils in viscous and compressible flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 October 2022

Fariba Ramezani, Amir Arjomandi and Charles Harvie

As a by-product of the production process, emissions can follow output fluctuations. Hence, disregarding the relationship between economic fluctuations and emissions could result…

Abstract

Purpose

As a by-product of the production process, emissions can follow output fluctuations. Hence, disregarding the relationship between economic fluctuations and emissions could result in undesirable environmental outcomes. This study aims to investigate the environmental and economic effects of abatement subsidies on overall emissions during business cycles in Australia.

Design/methodology/approach

A real business cycle (RBC) model is devised and parameterised in this paper. RBC models have been recently introduced to environmental policy analysis, and this study contributes to the literature by investigating the effects of a potential subsidy policy in an RBC framework. The model is also calibrated and provides solutions for the Australian economy.

Findings

The authors find that under a steady-state situation, supporting abatement can result in reducing emissions by 6.45% while it imposes welfare costs to the economy (by 0.61%). Simulation results show that an optimal abatement policy should be pro-cyclical, with the abatement subsidy increasing during expansions and decreasing during recessions. As well, in a subsidy policy setting, emissions would react pro-cyclically, i.e. emissions increase (decrease) when the gross domestic product increases (decreases). The abatement reaction by firms, however, is different, because when a positive productivity shock occurs, firms reduce abatement and allocate resources to production. Nonetheless, as time passes, the increased subsidy provides a strong enough incentive to allocate resources to abatement and, subsequently, abatement increases.

Originality/value

This paper investigates how an emission reduction subsidy should be adapted to macroeconomic fluctuations so that it can limit variations in emissions.

Details

Studies in Economics and Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1086-7376

Keywords

Article
Publication date: 26 December 2023

Hai Le and Phuong Nguyen

This study examines the importance of exchange rate and credit growth fluctuations when designing monetary policy in Thailand. To this end, the authors construct a small open…

Abstract

Purpose

This study examines the importance of exchange rate and credit growth fluctuations when designing monetary policy in Thailand. To this end, the authors construct a small open economy New Keynesian dynamic stochastic general equilibrium (DSGE) model. The model encompasses several essential characteristics, including incomplete financial markets, incomplete exchange rate pass-through, deviations from the law of one price and a banking sector. The authors consider generalized Taylor rules, in which policymakers adjust policy rates in response to output, inflation, credit growth and exchange rate fluctuations. The marginal likelihoods are then employed to investigate whether the central bank responds to fluctuations in the exchange rate and credit growth.

Design/methodology/approach

This study constructs a small open economy DSGE model and then estimates the model using Bayesian methods.

Findings

The authors demonstrate that the monetary authority does target exchange rates, whereas there is no evidence in favor of incorporating credit growth into the policy rules. These findings survive various robustness checks. Furthermore, the authors demonstrate that domestic shocks contribute significantly to domestic business cycles. Although the terms of trade shock plays a minor role in business cycles, it explains the most significant proportion of exchange rate fluctuations, followed by the country risk premium shock.

Originality/value

This study is the first attempt at exploring the relevance of exchange rate and credit growth fluctuations when designing monetary policy in Thailand.

Details

Journal of Economic Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 20 December 2023

Oskar Szulc, Piotr Doerffer, Pawel Flaszynski and Marianna Braza

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Abstract

Purpose

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Design/methodology/approach

The concept is based on the introduction of a tangentially moving wall upstream of the shock wave and in the interaction region. The SBLI control mechanism may be implemented as a closed belt floating on an air cushion, sliding over two cylinders and forming the outer skin of the suction side of the airfoil. The presented exploratory numerical study is conducted with SPARC solver (steady 2D RANS). The effect of the moving wall is presented for the NACA 0012 airfoil operating in transonic conditions.

Findings

To assess the accuracy of obtained solutions, validation of the computational model is demonstrated against the experimental data of Harris, Ladson & Hill and Mineck & Hartwich (NASA Langley). The comparison is conducted not only for the reference (impermeable) but also for the perforated (permeable) surface NACA 0012 airfoils. Subsequent numerical analysis of SBLI control by moving wall confirms that for the selected velocity ratios, the method is able to improve the shock-upstream boundary layer and counteract flow separation, significantly increasing the airfoil aerodynamic performance.

Originality/value

The moving wall concept as a means of normal shock wave–turbulent boundary layer interaction and shock-induced separation control has been investigated in detail for the first time. The study quantified the necessary operational requirements of such a system and practicable aerodynamic efficiency gains and simultaneously revealed the considerable potential of this promising idea, stimulating a new direction for future investigations regarding SBLI control.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 March 2024

Pratheek Suresh and Balaji Chakravarthy

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a…

Abstract

Purpose

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a dielectric fluid, has emerged as a promising alternative. Ensuring reliable operations in data centre applications requires the development of an effective control framework for immersion cooling systems, which necessitates the prediction of server temperature. While deep learning-based temperature prediction models have shown effectiveness, further enhancement is needed to improve their prediction accuracy. This study aims to develop a temperature prediction model using Long Short-Term Memory (LSTM) Networks based on recursive encoder-decoder architecture.

Design/methodology/approach

This paper explores the use of deep learning algorithms to predict the temperature of a heater in a two-phase immersion-cooled system using NOVEC 7100. The performance of recursive-long short-term memory-encoder-decoder (R-LSTM-ED), recursive-convolutional neural network-LSTM (R-CNN-LSTM) and R-LSTM approaches are compared using mean absolute error, root mean square error, mean absolute percentage error and coefficient of determination (R2) as performance metrics. The impact of window size, sampling period and noise within training data on the performance of the model is investigated.

Findings

The R-LSTM-ED consistently outperforms the R-LSTM model by 6%, 15.8% and 12.5%, and R-CNN-LSTM model by 4%, 11% and 12.3% in all forecast ranges of 10, 30 and 60 s, respectively, averaged across all the workloads considered in the study. The optimum sampling period based on the study is found to be 2 s and the window size to be 60 s. The performance of the model deteriorates significantly as the noise level reaches 10%.

Research limitations/implications

The proposed models are currently trained on data collected from an experimental setup simulating data centre loads. Future research should seek to extend the applicability of the models by incorporating time series data from immersion-cooled servers.

Originality/value

The proposed multivariate-recursive-prediction models are trained and tested by using real Data Centre workload traces applied to the immersion-cooled system developed in the laboratory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 February 2024

Karlo Marques Junior

This paper seeks to explore the sensitivity of these parameters and their impact on fiscal policy outcomes. We use the existing literature to establish possible ranges for each…

20

Abstract

Purpose

This paper seeks to explore the sensitivity of these parameters and their impact on fiscal policy outcomes. We use the existing literature to establish possible ranges for each parameter, and we examine how changes within these ranges can alter the outcomes of fiscal policy. In this way, we aim to highlight the importance of these parameters in the formulation and evaluation of fiscal policy.

Design/methodology/approach

The role of fiscal policy, its effects and multipliers continues to be a subject of intense debate in macroeconomics. Despite adopting a New Keynesian approach within a macroeconomic model, the reactions of macroeconomic variables to fiscal shocks can vary across different contexts and theoretical frameworks. This paper aims to investigate these diverse reactions by conducting a sensitivity analysis of parameters. Specifically, the study examines how key variables respond to fiscal shocks under different parameter settings. By analyzing the behavioral dynamics of these variables, this research contributes to the ongoing discussion on fiscal policy. The findings offer valuable insights to enrich the understanding of the complex relationship between fiscal shocks and macroeconomic outcomes, thus facilitating informed policy debates.

Findings

This paper aims to investigate key elements of New Keynesian Dynamic Stochastic General Equilibrium (DSGE) models. The focus is on the calibration of parameters and their impact on macroeconomic variables, such as output and inflation. The study also examines how different parameter settings affect the response of monetary policy to fiscal measures. In conclusion, this study has relied on theoretical exploration and a comprehensive review of existing literature. The parameters and their relationships have been analyzed within a robust theoretical framework, offering valuable insights for further research on how these factors influence model forecasts and inform policy recommendations derived from New Keynesian DSGE models. Moving forward, it is recommended that future work includes empirical analyses to test the reliability and effectiveness of parameter calibrations in real-world conditions. This will contribute to enhancing the accuracy and relevance of DSGE models for economic policy decision-making.

Originality/value

This study is motivated by the aim to provide a deeper understanding of the roles macroeconomic model parameters play concerning responses to expansionary fiscal policies and the subsequent reactions of monetary authorities. Comprehensive reviews that encompass this breadth of relationships within a single text are rare in the literature, making this work a valuable contribution to stimulating discussions on macroeconomic policies.

Details

Journal of Economic Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 18 April 2022

Aleksandar Vasilev

The author augments an otherwise standard business cycle model with a richer government sector and adds money-in-utility (MIU) considerations to study economic fluctuations.

Abstract

Purpose

The author augments an otherwise standard business cycle model with a richer government sector and adds money-in-utility (MIU) considerations to study economic fluctuations.

Design/methodology/approach

More specifically, real money balances enter in a non-separable way with consumption and leisure. This specification is then calibrated to Bulgarian data after the introduction of the currency board (1999–2020) gives a role to money in accentuating economic fluctuations.

Findings

This novel mechanism allows the framework to reproduce – better than the real business cycle (RBC) model – the observed variability and correlations among model variables, and those characterizing the labor market in particular. In addition, money is non-neutral and affects aggregate economic activity.

Originality/value

This is the first micro-founded monetary-DSGE (dynamic stochastic general equilibrium) model on Bulgaria trying to explain the role of money for economic fluctuations.

Details

Journal of Economic and Administrative Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1026-4116

Keywords

Article
Publication date: 19 February 2024

Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…

Abstract

Purpose

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.

Design/methodology/approach

Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.

Findings

The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.

Practical implications

The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.

Originality/value

This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 18 April 2024

Yaxing Ren, Ren Li, Xiaoying Ru and Youquan Niu

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller…

Abstract

Purpose

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller range and shorter time. The developed active shock absorber will also improve the safety and comfort of passengers driving in ultra-high-speed elevators.

Design/methodology/approach

A six-degree of freedom dynamic model is established according to the position and condition of the car. Then the active shock absorber and disturbance compensation-based adaptive control scheme are designed and simulated in MATLAB/Simulink. The results are analysed and compared with the traditional shock absorber.

Findings

The results show that, compared with traditional spring-based passive damping systems, the designed active shock absorber can reduce vibration displacement by 60%, peak acceleration by 50% and oscillation time by 2/3 and is more robust to different spring stiffness, damping coefficient and load.

Originality/value

The developed active shock absorber and its control algorithm can significantly reduce vibration amplitude and converged time. It can also adjust the damping strength according to the actual load of the elevator car, which is more suitable for high-speed elevators.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 12