Search results

1 – 10 of over 58000
Article
Publication date: 5 March 2018

Sajjad Tofighy and Seyed Mostafa Fakhrahmad

This paper aims to propose a statistical and context-aware feature reduction algorithm that improves sentiment classification accuracy. Classification of reviews with different…

Abstract

Purpose

This paper aims to propose a statistical and context-aware feature reduction algorithm that improves sentiment classification accuracy. Classification of reviews with different granularities in two classes of reviews with negative and positive polarities is among the objectives of sentiment analysis. One of the major issues in sentiment analysis is feature engineering while it severely affects time complexity and accuracy of sentiment classification.

Design/methodology/approach

In this paper, a feature reduction method is proposed that uses context-based knowledge as well as synset statistical knowledge. To do so, one-dimensional presentation proposed for SentiWordNet calculates statistical knowledge that involves polarity concentration and variation tendency for each synset. Feature reduction involves two phases. In the first phase, features that combine semantic and statistical similarity conditions are put in the same cluster. In the second phase, features are ranked and then the features which are given lower ranks are eliminated. The experiments are conducted by support vector machine (SVM), naive Bayes (NB), decision tree (DT) and k-nearest neighbors (KNN) algorithms to classify the vectors of the unigram and bigram features in two classes of positive or negative sentiments.

Findings

The results showed that the applied clustering algorithm reduces SentiWordNet synset to less than half which reduced the size of the feature vector by less than half. In addition, the accuracy of sentiment classification is improved by at least 1.5 per cent.

Originality/value

The presented feature reduction method is the first use of the synset clustering for feature reduction. In this paper features reduction algorithm, first aggregates the similar features into clusters then eliminates unsatisfactory cluster.

Details

Kybernetes, vol. 47 no. 5
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 28 February 2022

Rui Zhang, Na Zhao, Liuhu Fu, Lihu Pan, Xiaolu Bai and Renwang Song

This paper aims to propose a new ultrasonic diagnosis method for stainless steel weld defects based on multi-domain feature fusion to solve two problems in the ultrasonic…

Abstract

Purpose

This paper aims to propose a new ultrasonic diagnosis method for stainless steel weld defects based on multi-domain feature fusion to solve two problems in the ultrasonic diagnosis of austenitic stainless steel weld defects. These are insufficient feature extraction and subjective dependence of diagnosis model parameters.

Design/methodology/approach

To express the richness of the one-dimensional (1D) signal information, the 1D ultrasonic testing signal was derived to the two-dimensional (2D) time-frequency domain. Multi-scale depthwise separable convolution was also designed to optimize the MobileNetV3 network to obtain deep convolution feature information under different receptive fields. At the same time, the time/frequent-domain feature extraction of the defect signals was carried out based on statistical analysis. The defect sensitive features were screened out through visual analysis, and the defect feature set was constructed by cascading fusion with deep convolution feature information. To improve the adaptability and generalization of the diagnostic model, the authors designed and carried out research on the hyperparameter self-optimization of the diagnostic model based on the sparrow search strategy and constructed the optimal hyperparameter combination of the model. Finally, the performance of the ultrasonic diagnosis of stainless steel weld defects was improved comprehensively through the multi-domain feature characterization model of the defect data and diagnosis optimization model.

Findings

The experimental results show that the diagnostic accuracy of the lightweight diagnosis model constructed in this paper can reach 96.55% for the five types of stainless steel weld defects, including cracks, porosity, inclusion, lack of fusion and incomplete penetration. These can meet the needs of practical engineering applications.

Originality/value

This method provides a theoretical basis and technical reference for developing and applying intelligent, efficient and accurate ultrasonic defect diagnosis technology.

Article
Publication date: 19 July 2019

Slawomir Koziel and Adrian Bekasiewicz

This paper aims to investigate the strategy for low-cost yield optimization of miniaturized microstrip couplers using variable-fidelity electromagnetic (EM) simulations.

Abstract

Purpose

This paper aims to investigate the strategy for low-cost yield optimization of miniaturized microstrip couplers using variable-fidelity electromagnetic (EM) simulations.

Design/methodology/approach

Usefulness of data-driven models constructed from structure frequency responses formulated in the form of suitably defined characteristic points for statistical analysis is investigated. Reformulation of the characteristics leads to a less nonlinear functional landscape and reduces the number of training samples required for accurate modeling. Further reduction of the cost associated with construction of the data-driven model, is achieved using variable-fidelity methods. Numerical case study is provided demonstrating feasibility of the feature-based modeling for low cost statistical analysis and yield optimization.

Findings

It is possible, through reformulation of the structure frequency responses in the form of suitably defined feature points, to reduce the number of training samples required for its data-driven modeling. The approximation model can be used as an accurate evaluation engine for a low-cost Monte Carlo analysis. Yield optimization can be realized through minimization of yield within the data-driven model bounds and subsequent model re-set around the optimized design.

Research limitations/implications

The investigated technique exceeds capabilities of conventional Monte Carlo-based approaches for statistical analysis in terms of computational cost without compromising its accuracy with respect to the conventional EM-based Monte Carlo.

Originality/value

The proposed tolerance-aware design approach proved useful for rapid yield optimization of compact microstrip couplers represented using EM-simulation models, which is extremely challenging when using conventional approaches due to tremendous number of EM evaluations required for statistical analysis.

Details

Engineering Computations, vol. 36 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 August 2018

Kiran Vernekar, Hemantha Kumar and Gangadharan K.V.

Bearings and gears are major components in any rotatory machines and, thus, gained interest for condition monitoring. The failure of such critical components may cause an increase…

421

Abstract

Purpose

Bearings and gears are major components in any rotatory machines and, thus, gained interest for condition monitoring. The failure of such critical components may cause an increase in down time and maintenance cost. Condition monitoring using the machine learning approach is a conceivable solution for the problem raised during the operation of the machinery system. The paper aims to discuss these issues.

Design/methodology/approach

This paper aims engine gearbox fault diagnosis based on a decision tree and artificial neural network algorithm.

Findings

The experimental result (classification accuracy 85.55 percent) validates that the proposed approach is an effective method for engine gearbox fault diagnosis.

Originality/value

This paper attempts to diagnose the faults in engine gearbox based on the machine learning approach with the combination of statistical features of vibration signals, decision tree and multi-layer perceptron neural network techniques.

Details

Journal of Quality in Maintenance Engineering, vol. 24 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 24 August 2021

Rajakumar Krishnan, Arunkumar Thangavelu, P. Prabhavathy, Devulapalli Sudheer, Deepak Putrevu and Arundhati Misra

Extracting suitable features to represent an image based on its content is a very tedious task. Especially in remote sensing we have high-resolution images with a variety of…

Abstract

Purpose

Extracting suitable features to represent an image based on its content is a very tedious task. Especially in remote sensing we have high-resolution images with a variety of objects on the Earth's surface. Mahalanobis distance metric is used to measure the similarity between query and database images. The low distance obtained image is indexed at the top as high relevant information to the query.

Design/methodology/approach

This paper aims to develop an automatic feature extraction system for remote sensing image data. Haralick texture features based on Contourlet transform are fused with statistical features extracted from the QuadTree (QT) decomposition are developed as feature set to represent the input data. The extracted features will retrieve similar images from the large image datasets using an image-based query through the web-based user interface.

Findings

The developed retrieval system performance has been analyzed using precision and recall and F1 score. The proposed feature vector gives better performance with 0.69 precision for the top 50 relevant retrieved results over other existing multiscale-based feature extraction methods.

Originality/value

The main contribution of this paper is developing a texture feature vector in a multiscale domain by combining the Haralick texture properties in the Contourlet domain and Statistical features using QT decomposition. The features required to represent the image is 207 which is very less dimension compare to other texture methods. The performance shows superior than the other state of art methods.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 3 December 2021

Reza Behkam, Hossein Karami, Mehdi Salay Naderi and Gevork B. Gharehpetian

This study aims to use frequency response analysis, a powerful tool to detect the location and types of transformer winding faults. Proposing an effective intelligent approach for…

Abstract

Purpose

This study aims to use frequency response analysis, a powerful tool to detect the location and types of transformer winding faults. Proposing an effective intelligent approach for interpreting the frequency responses is the most crucial problem of this method and has created many challenges.

Design/methodology/approach

Heat maps based on appropriate statistical indices have been supplied to depict the variations in the frequency responses associated with each fault type, fault location and fault extent along the windings. Also, after analyzing the results of artificial neural network (ANN) techniques, the generalized regression neural network method is introduced as the most effective solution for the classification of transformer winding faults.

Findings

Using a comparative approach, the performance of the used indices and ANN techniques are evaluated. The results showed the proper performance of Lin’s concordance coefficient (LCC) index and the amplitude (Amp) part of the frequency response. The proposed fitting percentage (FP) index can assist the intelligent classifiers in diagnosing the radial deformation (RD) fault with the highest accuracy considering all frequency response components in the classification procedure of winding faults.

Practical implications

Various ANN techniques are used to detect and determine the type of four important faults of transformer winding, i.e. axial displacement, RD, disc space variation and short circuit. Various statistical indices, such as cross-correlation factor, LCC, standard difference area, sum of errors, normalized root-mean-square deviation and FP, are used to extract the features of the frequency responses to consider as the ANN inputs. In addition, different components of the frequency response, such as Amp, argument, real and imaginary parts are examined in this paper. To implement the proposed procedure, step by step, various types of winding faults with different locations and extents are applied on the 20 kV winding of a 1.6 MVA distribution transformer.

Originality/value

Contributions have been made in identifying and diagnosing transformer winding defects through the use of appropriate algorithms for future research.

Article
Publication date: 23 June 2020

Ravikumar KN, Hemantha Kumar, Kumar GN and Gangadharan KV

The purpose of this paper is to study the fault diagnosis of internal combustion (IC) engine gearbox using vibration signals with signal processing and machine learning (ML…

Abstract

Purpose

The purpose of this paper is to study the fault diagnosis of internal combustion (IC) engine gearbox using vibration signals with signal processing and machine learning (ML) techniques.

Design/methodology/approach

Vibration signals from the gearbox are acquired for healthy and induced faulty conditions of the gear. In this study, 50% tooth fault and 100% tooth fault are chosen as gear faults in the driver gear. The acquired signals are processed and analyzed using signal processing and ML techniques.

Findings

The obtained results show that variation in the amplitude of the crankshaft rotational frequency (CRF) and gear mesh frequency (GMF) for different conditions of the gearbox with various load conditions. ML techniques were also employed in developing the fault diagnosis system using statistical features. J48 decision tree provides better classification accuracy about 85.1852% in identifying gearbox conditions.

Practical implications

The proposed approach can be used effectively for fault diagnosis of IC engine gearbox. Spectrum and continuous wavelet transform (CWT) provide better information about gear fault conditions using time–frequency characteristics.

Originality/value

In this paper, experiments are conducted on real-time running condition of IC engine gearbox while considering combustion. Eddy current dynamometer is attached to output shaft of the engine for applying load. Spectrum, cepstrum, short-time Fourier transform (STFT) and wavelet analysis are performed. Spectrum, cepstrum and CWT provide better information about gear fault conditions using time–frequency characteristics. ML techniques were used in analyzing classification accuracy of the experimental data to detect the gearbox conditions using various classifiers. Hence, these techniques can be used for detection of faults in the IC engine gearbox and other reciprocating/rotating machineries.

Details

Journal of Quality in Maintenance Engineering, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 25 December 2023

Umair Khan, William Pao, Karl Ezra Salgado Pilario, Nabihah Sallih and Muhammad Rehan Khan

Identifying the flow regime is a prerequisite for accurately modeling two-phase flow. This paper aims to introduce a comprehensive data-driven workflow for flow regime…

70

Abstract

Purpose

Identifying the flow regime is a prerequisite for accurately modeling two-phase flow. This paper aims to introduce a comprehensive data-driven workflow for flow regime identification.

Design/methodology/approach

A numerical two-phase flow model was validated against experimental data and was used to generate dynamic pressure signals for three different flow regimes. First, four distinct methods were used for feature extraction: discrete wavelet transform (DWT), empirical mode decomposition, power spectral density and the time series analysis method. Kernel Fisher discriminant analysis (KFDA) was used to simultaneously perform dimensionality reduction and machine learning (ML) classification for each set of features. Finally, the Shapley additive explanations (SHAP) method was applied to make the workflow explainable.

Findings

The results highlighted that the DWT + KFDA method exhibited the highest testing and training accuracy at 95.2% and 88.8%, respectively. Results also include a virtual flow regime map to facilitate the visualization of features in two dimension. Finally, SHAP analysis showed that minimum and maximum values extracted at the fourth and second signal decomposition levels of DWT are the best flow-distinguishing features.

Practical implications

This workflow can be applied to opaque pipes fitted with pressure sensors to achieve flow assurance and automatic monitoring of two-phase flow occurring in many process industries.

Originality/value

This paper presents a novel flow regime identification method by fusing dynamic pressure measurements with ML techniques. The authors’ novel DWT + KFDA method demonstrates superior performance for flow regime identification with explainability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 September 2019

Tingyu Weng, Wenyang Liu and Jun Xiao

The purpose of this paper is to design a model that can accurately forecast the supply chain sales.

2282

Abstract

Purpose

The purpose of this paper is to design a model that can accurately forecast the supply chain sales.

Design/methodology/approach

This paper proposed a new model based on lightGBM and LSTM to forecast the supply chain sales. In order to verify the accuracy and efficiency of this model, three representative supply chain sales data sets are selected for experiments.

Findings

The experimental results show that the combined model can forecast supply chain sales with high accuracy, efficiency and interpretability.

Practical implications

With the rapid development of big data and AI, using big data analysis and algorithm technology to accurately forecast the long-term sales of goods will provide the database for the supply chain and key technical support for enterprises to establish supply chain solutions. This paper provides an effective method for supply chain sales forecasting, which can help enterprises to scientifically and reasonably forecast long-term commodity sales.

Originality/value

The proposed model not only inherits the ability of LSTM model to automatically mine high-level temporal features, but also has the advantages of lightGBM model, such as high efficiency, strong interpretability, which is suitable for industrial production environment.

Details

Industrial Management & Data Systems, vol. 120 no. 2
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 1 February 1977

G.H.R. REISIG

The presented principal objective is information retrieval from tepetitiously generated data sets. In contrast to conventional, formally statistical analysis, the genesis of data…

Abstract

The presented principal objective is information retrieval from tepetitiously generated data sets. In contrast to conventional, formally statistical analysis, the genesis of data is postulated as the principal feature of analysis for obtaining the optimum of information from any data set. Consequently, arbitrary randomization of naturally sequential data, formal averaging, and “amplitude‐classification” of formal statistics are rejected because of suppression of information. Preservation of information is accomplished by pattern classification of coherent data sets into characteristic pattern prototypes. Examples are given.

Details

Kybernetes, vol. 6 no. 2
Type: Research Article
ISSN: 0368-492X

1 – 10 of over 58000