Search results

1 – 10 of 980
Open Access
Article
Publication date: 27 September 2023

Markus Brummer, Karl Jakob Raddatz, Matthias Moritz Schmitt, Georg Schlick, Thomas Tobie, Rüdiger Daub and Karsten Stahl

Numerous metals can be processed using the additive manufacturing process laser-based powder bed fusion of metals (PBF-LB/M, ISO/ASTM 52900). The main advantages of additive…

Abstract

Purpose

Numerous metals can be processed using the additive manufacturing process laser-based powder bed fusion of metals (PBF-LB/M, ISO/ASTM 52900). The main advantages of additive manufacturing technologies are the high degree of design freedom and the cost-effective implementation of lightweight structures. This could be profitable for gears with increased power density, combining reduced mass with considerable material strength. Current research on additively manufactured gears is focused on developing lightweight structures but is seldom accompanied by simulations and even less by mechanical testing. There has been very little research into the mechanical and material properties of additively manufactured gears. The purpose of this study is to investigate the behavior of lightweight structures in additively manufactured gears under static loads.

Design/methodology/approach

This research identifies the static load-carrying capacity of helical gears with different lightweight structures produced by PBF-LB/M with the case hardening steel 16MnCr5. A static gear loading test rig with a maximum torque at the pinion of T1 = 1200 Nm is used. Further focus is set on analyzing material properties such as the relative density, microstructure, hardness depth profile and chemical composition.

Findings

All additively manufactured gear variants show no failure or plastic deformation at the maximum test load. The shaft hub connection, the lightweight hub designs and the gearing itself are stable and intact regarding their form and function. The identified material characteristics are comparable to conventionally manufactured gears (wrought and machined), but also some particularities were observed.

Originality/value

This research demonstrates the mechanical strength of lightweight structures in gears. Future research needs to consider the dynamic load-carrying capacity of additively manufactured gears.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 March 2024

Lifeng Wang, Fei Yu, Ziwang Xiao and Qi Wang

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become…

Abstract

Purpose

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become super-reinforced beams, and there are security risks in the actual use of super-reinforced beams. In order to avoid the occurrence of this situation, the purpose of this paper is to study the calculation method of the maximum number of bonded steel plates to reinforce reinforced concrete beams.

Design/methodology/approach

First of all, when establishing the limit failure state of the reinforced member, this paper comprehensively considers the role of the tensile steel bar and steel plate and takes the load effect before reinforcement as the negative contribution of the maximum number of bonded steel plates that can be used for reinforcement. Through the definition of the equivalent tensile strength, equivalent elastic modulus and equivalent yield strain of the tensile steel bar and steel plate, a method to determine the relative limit compression zone height of the reinforced member is obtained. Second, based on the maximum ratio of (reinforcement + steel plate), the relative limit compression zone height and the equivalent tensile strength of the tensile steel bar and steel plate of the reinforced member, the calculation method of the maximum number of bonded steel plates is derived. Then, the static load test of the test beam is carried out and the corresponding numerical model is established, and the reliability of the numerical model is verified by comparison. Finally, the accuracy of the calculation method of the maximum number of bonded steel plates is proved by the numerical model.

Findings

The numerical simulation results show that when the steel plate width is 800 mm and the thickness is 1–4 mm, the reinforced concrete beam has a delayed yield platform when it reaches the limit state, and the failure mode conforms to the basic stress characteristics of the balanced-reinforced beam. When the steel plate thickness is 5–8 mm, the sudden failure occurs without obvious warning when the reinforced concrete beam reaches the limit state. The failure mode conforms to the basic mechanical characteristics of the super-reinforced beam failure, and the bending moment of the beam failure depends only on the compressive strength of the concrete. The results of the calculation and analysis show that the maximum number of bonded steel plates for reinforced concrete beams in this experiment is 3,487 mm2. When the width of the steel plate is 800 mm, the maximum thickness of the steel plate can be 4.36 mm. That is, when the thickness of the steel plate, the reinforced concrete beam is still the balanced-reinforced beam. When the thickness of the steel plate, the reinforced concrete beam will become a super-reinforced beam after reinforcement. The calculation results are in good agreement with the numerical simulation results, which proves the accuracy of the calculation method.

Originality/value

This paper presents a method for calculating the maximum number of steel plates attached to the bottom of reinforced concrete beams. First, based on the experimental research, the failure mode of reinforced concrete beams with different number of steel plates is simulated by the numerical model, and then the result of the calculation method is compared with the result of the numerical simulation to ensure the accuracy of the calculation method of the maximum number of bonded steel plates. And the study does not require a large number of experimental samples, which has a certain economy. The research result can be used to control the number of steel plates in similar reinforcement designs.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 December 2023

Lifeng Wang, Jiwei Bi, Long Liu and Ziwang Xiao

This paper presents the experimental and numerical results of the bending properties of low-height prestressed T-beams. The purpose is to study the bearing capacity, failure state…

Abstract

Purpose

This paper presents the experimental and numerical results of the bending properties of low-height prestressed T-beams. The purpose is to study the bearing capacity, failure state and strain distribution of low-height prestressed T-beams.

Design/methodology/approach

First, two 13 m-long full-size test beams were fabricated with different positions of prestressed steel bundles in the span. The load–deflection curves and failure patterns of each test beam were obtained through static load tests. Secondly, the test data were used to validate the finite element model developed to simulate the flexural behavior of low-height prestressed T-beams. Finally, the influence of different parameters (the number of prestressed steel bundles, initial prestress and concrete strength grade) on the flexural performance of the test beams is studied by using a finite element model.

Findings

The test results show that when the distance of the prestressed steel beam from the bottom height of the test beam increases from 40 to 120 mm, the cracking load of the test beam decreases from 550.00 to 450.00 kN, reducing by 18.18%, and the ultimate load decreases from 1338.15 to 1227.66 kN, reducing by 8.26%, therefore, the increase of the height of the prestressed steel beam reduces the bearing capacity of the test beam. The numerical simulation results show that when the number of steel bundles increases from 2 to 9, the cracking load increases by 183.60%, the yield load increases by 117.71% and the ultimate load increases by 132.95%. Therefore, the increase in the number of prestressed steel bundles can increase the cracking load, yield load and ultimate load of the test beam. When the initial prestress is from 695 to 1,395 MPa, the cracking load increases by 69.20%, the yield load of the bottom reinforcement increases by 31.61% and the ultimate load increases by 3.97%. Therefore, increasing the initial prestress can increase the cracking load and yield load of the test beam, but it has little effect on the ultimate load. The strength grade of concrete increases from C30 to C80, the cracking load is about 455.00 kN, the yield load is about 850.00 kN and the ultimate load is increased by 4.90%. Therefore, the improvement in concrete strength grade has little influence on the bearing capacity of the test beam.

Originality/value

Based on the experimental study, the bearing capacity of low-height prestressed T-beams with different prestressed steel beam heights is calculated by finite element simulation, and the influence of different parameters on the bearing capacity is discussed. This method not only ensures the accuracy of bearing capacity assessment, but also does not require a large number of samples and has a certain economy. The study of prestressed low-height T-beams is of great significance for understanding the principle and application of prestressed technology. Research on the mechanical behavior and performance of low-height prestressed T beams can provide a scientific basis and technical support for the design and construction of prestressed concrete structures. In addition, the study of prestressed low-height T-beams can also provide a reference for the optimization design and construction of other structural types.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 29 March 2024

Aminuddin Suhaimi, Izni Syahrizal Ibrahim and Mariyana Aida Ab Kadir

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to…

Abstract

Purpose

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to understand pre-loading's role in replicating RC beams' actual responses to fire, aiming to improve fire testing protocols and structural fire engineering design.

Design/methodology/approach

This review systematically aggregates data from existing literature on the fire response of RC beams, comparing scenarios with (WP) and without pre-loading (WOP). Through statistical tools like the two-tailed t-test and Mann–Whitney U-test, it assesses deflection extremes. The study further examines structural responses, including flexural and shear behavior, ultimate load capacity, post-yield behavior, stiffness degradation and failure modes. The approach concludes with a statistical forecast of ideal pre-load levels to elevate experimental precision and enhance fire safety standards.

Findings

The review concludes that pre-loading profoundly affects the fire response of RC beams, suggesting a 35%–65% structural capacity range for realistic simulations. The review also recommended the initial crack load as an alternative metric for determining the pre-loading impact. Crucially, it highlights that pre-loading not only influences the fire response but also significantly alters the overall structural behavior of the RC beams.

Originality/value

The review advances structural fire engineering with an in-depth analysis of pre-loading's impact on RC beams during fire exposure, establishing a validated pre-load range through thorough statistical analysis and examination of previous research. It refines experimental methodologies and structural design accuracy, ultimately bolstering fire safety protocols.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 July 2023

Qaiser Uz Zaman Khan, Muhammad Farhan and Ali Raza

The main purpose of this study is to examine the damage behavior of flexural members under different loading conditions. The finite element model is proposed for the prediction of…

Abstract

Purpose

The main purpose of this study is to examine the damage behavior of flexural members under different loading conditions. The finite element model is proposed for the prediction of modal parameters, damage assessment and damage detection of flexural members. Moreover, the analysis of flexural members has been done for the sensor arrangement to accurately predict the damage parameters without the laborious work of experimentation in the laboratory.

Design/methodology/approach

Beam-like structures are structures that are subjected to flexural loadings that are involved in almost every type of civil engineering construction like buildings, bridges, etc. Experimental Modal Analysis (EMA) is a popular technique to detect damages in structures without requiring tough and complex methods. Experimental work conducted in this study concludes that a structure experiences high changes in modal properties once when cracking occurs and then at the stage where cracks start at the critical neutral axis. Moreover, among the various modal parameters of the flexural members, natural frequency and mode shapes are the viable parameters for the damage detection.

Findings

For torsional mode, drop in natural frequency is high for higher damages as compared to low levels. This is because of the opening and closing of cracks in modal testing. When damage occurs in the structure, there is a reduction in the magnitude of the FRF plot. The measure of this drop can also lead to damage assessment in addition to damage detection. The natural frequency of the system is the most reliable modal parameter in detecting damages. However, for damage localization, the next step after damage assessment, mode shapes can be more helpful as compared to all other parameters.

Originality/value

Effect on Dynamic Properties of Flexural Members during the Progressive Deterioration of Reinforced Concrete Structures is studied.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 November 2021

Kexin Zhang, Dachao Li, Xinyuan Shen, Wenyu Hou, Yanfeng Li and Xingwei Xue

This paper aims to describe carbon fiber reinforced plastics (CFRP) bars as a way to strengthen a 40-year-old stone arch bridge. To investigate effectiveness of the strengthening…

Abstract

Purpose

This paper aims to describe carbon fiber reinforced plastics (CFRP) bars as a way to strengthen a 40-year-old stone arch bridge. To investigate effectiveness of the strengthening method, fielding-load tests were carried out before and after strengthening.

Design/methodology/approach

High-strength CFRP bars with minor radius, high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with CFRP bars – including CFRP bars cutting, crack grouting, original structural surface treatment, implant drilling, CFRP bars installation and pouring mortar – was described. Ultimate bearing capacity of the bridge after strengthening was discussed.

Findings

The results of concrete stress and deflection show that the strength and stiffness of the strengthened bridge are improved. The strengthened way with CFRP bars is feasible and effective.

Originality/value

This paper describes CFRP bars as a way to strengthen a 40-year-old stone arch bridge.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 7 March 2023

Solomon O. Obadimu and Kyriakos I. Kourousis

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the…

1163

Abstract

Purpose

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the honeycomb structure. However, research on in-plane compressive performance of both classical and new types of honeycombs fabricated via AM is still ongoing. Several important findings have emerged over the past years, with significance for the AM community and a review is considered necessary and timely. This paper aims to review the in-plane compressive performance of AM honeycomb structures.

Design/methodology/approach

This paper provides a state-of-the-art review focussing on the in-plane compressive performance of AM honeycomb structures, covering both polymers and metals. Recently published studies, over the past six years, have been reviewed under the specific theme of in-plane compression properties.

Findings

The key factors influencing the AM honeycombs' in-plane compressive performance are identified, namely the geometrical features, such as topology shape, cell wall thickness, cell size and manufacturing parameters. Moreover, the techniques and configurations commonly used for geometry optimisation toward improving mechanical performance are discussed in detail. Current AM limitations applicable to AM honeycomb structures are identified and potential future directions are also discussed in this paper.

Originality/value

This work evaluates critically the primary results and findings from the published research literature associated with the in-plane compressive mechanical performance of AM honeycombs.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 21 April 2023

Mohammed Tahi, Mohamed Chikhaoui and Mohamed Chabaat

Monobloc sleepers have several problems related to bending cracking, especially longitudinal cracking and cracking at rail seat under preload release. Therefore, the purpose of…

28

Abstract

Purpose

Monobloc sleepers have several problems related to bending cracking, especially longitudinal cracking and cracking at rail seat under preload release. Therefore, the purpose of this study is to describe the behavior and cracking mode of prestressed concrete railroad sleepers under static loads using the positive test. Experimental tests followed by 3-D numerical models were performed of the same test.

Design/methodology/approach

Two steel supports were placed on the rail seat. During a progressive loading, the initiated cracks had approximately the same amplitude as those obtained from the numerical model. The type of cracking depends on the intensity of the applied static load and the loading rate. A validated three-dimensional digital model was established. The obtained results showed a perfect resemblance to the experimental tests. The final design was optimized and verified using a validated numerical simulation.

Findings

At low static loading levels, the first flexural shear cracks appeared at a vertical position located between the two steel supports. At higher static loading levels, bending shear cracks have occurred. The latter are inclined at the steel supports. It was proven that for higher loading levels, shear cracks were the primary mode of failure.

Research limitations/implications

Owing to the sensitivity of monobloc sleepers to technology production, the results are limited by the maximal loading and press used.

Practical implications

Numerical modeling greatly reduces uncertainties in laboratory testing and is an important tool for visualizing and quantifying rail seat cracks to understand behavior and predict collapse.

Social implications

Ensuring human life during rail operations is one of our the long-term priorities. This cannot be done unless the authors manage to master the manufacturing tool for sleepers while controlling the limitation of crack propagation.

Originality/value

The three-dimensional numerical established model has been checked and validated against the experimental results using the positive test to understand the behavior and the cracking mode of prestressed concrete railroad sleepers under static loads. The proposed numerical model has been more refined for a later more complex application by reducing the computation time.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 April 2024

Amer Mecellem, Soufyane Belhenini, Douaa Khelladi and Caroline Richard

The purpose of this study is to propose a simplifying approach for modelling a reliability test. Modelling the reliability tests of printed circuit board (PCB)/microelectronic…

Abstract

Purpose

The purpose of this study is to propose a simplifying approach for modelling a reliability test. Modelling the reliability tests of printed circuit board (PCB)/microelectronic component assemblies requires the adoption of several simplifying assumptions. This study introduces and validates simplified assumptions for modeling a four-point bend test on a PCB/wafer-level chip scale packaging assembly.

Design/methodology/approach

In this study, simplifying assumptions were used. These involved substituting dynamic imposed displacement loading with an equivalent static loading, replacing the spherical shape of the interconnections with simplified shapes (cylindrical and cubic) and transitioning from a three-dimensional modelling approach to an equivalent two-dimensional model. The validity of these simplifications was confirmed through both quantitative and qualitative comparisons of the numerical results obtained. The maximum principal plastic strain in the solder balls and copper pads served as the criteria for comparison.

Findings

The simplified hypotheses were validated through quantitative and qualitative comparisons of the results from various models. Consequently, it was determined that the replacement of dynamic loading with equivalent static loading had no significant impact on the results. Similarly, substituting the spherical shape of interconnections with an equivalent shape and transitioning from a three-dimensional approach to a two-dimensional one did not substantially affect the precision of the obtained results.

Originality/value

This study serves as a valuable resource for researchers seeking to model accelerated reliability tests, particularly in the context of four-point bending tests. The results obtained in this study will assist other researchers in streamlining their numerical models, thereby reducing calculation costs through the utilization of the simplified hypotheses introduced and validated herein.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 8 November 2023

Panagiotis Kordas, Konstantinos Fotopoulos, George Lampeas, Evangelos Karelas and Evgenios Louizos

Fuselage structures are subjected to combinations of axial, bending, shear and differential pressure loads. The validation of advanced metallic and composite fuselage designs…

Abstract

Purpose

Fuselage structures are subjected to combinations of axial, bending, shear and differential pressure loads. The validation of advanced metallic and composite fuselage designs against such loads is based on the full-scale testing of the fuselage barrel, which, however, is highly demanding from a time and cost viewpoint. This paper aims to assist in scaling-down the experimentation to the stiffened panel level which presents the opportunity to validate state-of-the-art designs at higher rates than previously attainable.

Design/methodology/approach

Development of a methodology to successfully design tests at the stiffened panel level and realize them using advanced, complex and adaptable test-rigs that are capable of introducing independently a set of distinct load types (e.g. internal overpressure, tension, shear) while applying appropriate boundary conditions at the edges of the stiffened panel.

Findings

A baseline test-rig configuration was developed after extensive parametric modelling studies at the stiffened panel level. The realization of the loading and boundary conditions on the test-rig was facilitated through innovative supporting and loading system set-ups.

Originality/value

The proposed test bench is novel and compared to the conventional counterparts more viable from an economic and manufacturing point of view. It leads to panel responses, which are as close as possible to those of the fuselage barrel in-flight and can be used for the execution of static or fatigue tests on metallic and thermoplastic curved integrally stiffened full-scale panels, representative of a business jet fuselage.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 980