Search results

1 – 10 of over 1000
Article
Publication date: 20 October 2023

Dragan D. Milašinović

The purpose of this paper is to describe various aspects of the visco-elastoplastic (VEP) behavior of porous-hardened concrete samples in relation to standard tests.

Abstract

Purpose

The purpose of this paper is to describe various aspects of the visco-elastoplastic (VEP) behavior of porous-hardened concrete samples in relation to standard tests.

Design/methodology/approach

The problem is formulated on the basis of the rheological-dynamic analogy (RDA). In this study, changes in creep coefficient, Poisson's ratio, damage variables, modulus of elasticity, strength and angle of internal friction as a function of porosity are defined by P and S wave velocities. The RDA model provides a description of the degradation process of material properties from their peak state to their ultimate values using void volume fraction (VVF).

Findings

Compared to numerous versions of acoustic emission tracking developed to analyze the behavior of total wave propagation in inhomogeneous media with density variations, the proposed model is comprehensive in interpretation and consistent with physical understanding. The comparison of the damage variables with the theoretical variables under the assumption of spherical voids in the spherical representative volume element (RVE) shows a satisfactory agreement of the results for all analyzed samples if the maximum porosities are used for comparison.

Originality/value

The paper presents a new mathematical-physical method for examining the effect of porosity on the characteristics of hardened concrete. Porosity is essentially related to density variations. Therefore, it was logical to define the limit values of porosity using the strain energy density.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 September 2023

Xuanzhi Li, Suduo Xue, Xiongyan Li, Guanchen Liu and Renjie Liu

Instantaneous unloading with equal force is usually used to simulate the sudden failure of cables. This simulation method with equivalent force requires obtaining the magnitude…

Abstract

Purpose

Instantaneous unloading with equal force is usually used to simulate the sudden failure of cables. This simulation method with equivalent force requires obtaining the magnitude and direction of the force for the failed cable in the normal state. It is difficult, however, to determine the magnitude or direction of the equivalent force when the shape of the cable is complex (space curve). This model of equivalent force may be difficult to establish. Thus, a numerical simulation method, the instantaneous temperature rise method, was proposed to address the dynamic response caused by failures of the cables with complex structural form.

Design/methodology/approach

This method can instantly reduce the cable force to zero through the instantaneous temperature rise process of the cable. Combined with theoretical formula and finite element model, the numerical calculation principle and two key parameters (temperature rise value and temperature rise time) of this method were detailed. The validity of this approach was verified by comparing it with equivalent force models. Two cable-net case with saddle curved surfaces were presented. Their static failure behaviors were compared with the dynamic failure behaviors calculated by this method.

Findings

This simulation method can effectively address the structural dynamic response caused by cable failure and may be applied to all cable structures.

Originality/value

An instantaneous temperature rise method (ITRM) is proposed and verified. Its calculation theory is detailed. Two key parameters, temperature rise value and temperature rise time, of this method are discussed and the corresponding reference values are recommended.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 January 2024

Guibin Tan, Jinfu Li, Cheng Zhou, Ziwei Luo, Xing Huang and Fei Guo

This paper aims to focus on the high-speed rotary lip seal in aircraft engines, combining its service parameters, its own structure and application conditions, to study the…

Abstract

Purpose

This paper aims to focus on the high-speed rotary lip seal in aircraft engines, combining its service parameters, its own structure and application conditions, to study the influence of different eccentric forms, eccentricity, rotational speed and other factors on the performance of the rotary lip seal.

Design/methodology/approach

A numerical simulation model for high-speed eccentric rotary lip seals has been developed based on the theory of elastic hydrodynamic lubrication. This model comprehensively considers the coupling of multiple physical fields, including interface hydrodynamics, macroscopic solid mechanics and surface microscopic contact mechanics, under the operating conditions of rotary lip seals. The model takes into account eccentricity and uses the hazardous cross-sectional method to quantitatively predict sealing performance parameters, such as leakage rate and friction force.

Findings

Eccentricity has a large impact on lip seal performance; lips are more susceptible to wear failure under static eccentricity and to leakage failure under dynamic eccentricity.

Originality/value

This study provides a new idea for the design of rotary lip seal considering eccentricity, which is of guiding significance for the engineering application of rotary lip seal.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 December 2021

Malika Belhocine, Youcef Bouafia, Mohand Said Kachi and Karim Benyahi

The calculation and design of the structures are carried out with the aim of obtaining a sufficiently ductile behavior to allow the structure to undergo displacements, without…

Abstract

Purpose

The calculation and design of the structures are carried out with the aim of obtaining a sufficiently ductile behavior to allow the structure to undergo displacements, without risk of sudden breaks or loss of stability. The purpose of this study is to develop and validate a computer program (Thin beam2), allowing the modeling and simulation of the nonlinear behavior of reinforced concrete elements, on the other part, it is estimating the local and global ductility of the sections or elements constituting these structures.

Design/methodology/approach

The authors present two nonlinear analysis methods to carry out a parametric study of the factors influencing the local and global ductility of reinforced concrete structures. The first consists in evaluating the nonlinear behavior at the level of the cross-section of the reinforced concrete elements used in the elaborate Sectenol 1 program, it allows us to have the local ductility. The second, allows us to evaluate the nonlinear behavior of the element used in the modified thin beam 2 program, it allows us to estimate the overall ductility of the element.

Findings

The validation results of the Thin beam2 program are very satisfactory, by conferring the analytic and experimental results obtained by various researchers and the parametric study shows that each factor such as the compressive strength of the concrete has a favorable effect on ductility. Conversely, the normal compression force and the high resistance of tensioned reinforcements adversely affect ductility.

Originality/value

The reliability of the two programs lies in obtaining the local and global ductility of reinforced concrete structures because the calculation and design of the structures are carried out with the aim of obtaining ductile behavior without risk of breakage and instability.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 2 May 2023

Sarah Amsl, Iain Watson, Christoph Teller and Steve Wood

Inaccurate product information on retail websites lead to dissatisfied customers and profit losses. Yet, the effects of product information failures (PIFs) remain under-explored…

1828

Abstract

Purpose

Inaccurate product information on retail websites lead to dissatisfied customers and profit losses. Yet, the effects of product information failures (PIFs) remain under-explored, with the mobile commerce channel commonly overlooked. This paper aims (1) to investigate the negative effects of PIFs on shoppers' attitudes and behaviours in a mobile context. The authors further (2) evaluate the impacts of the cause and duration of a PIF, changes of expectations towards the retailer after a PIF occurred and how previous mobile shopping experience in general decreases the effects of PIFs.

Design/methodology/approach

The authors conducted a scenario-based experiment with a one-factorial between-subjects design. The six most common PIFs of an international leading online fashion retailer are operationalized and tested against a control group. The final sample consists out of 758 mobile shoppers from the UK.

Findings

The results demonstrate that the perceived severity of PIFs based on showing customers incorrect information is higher when key information is lacking. Further, when the cause of a PIF is attributed to the retailer, it results in higher recovery expectations towards them. The results also reveal that respondents who have shopped mobile before perceive PIFs as less severe than inexperienced ones.

Originality/value

This research expands the online service failure literature by examining PIFs and its effects in the specific context of mobile commerce. The authors also provide recommendations for a better management of PIFs like the incorporation of PIFs information into reporting packs.

Details

International Journal of Retail & Distribution Management, vol. 51 no. 9/10
Type: Research Article
ISSN: 0959-0552

Keywords

Article
Publication date: 31 July 2023

Niranjan Chikkanna, Shankar Krishnapillai and Velmurugan Ramachandran

Auxetics are the class of cellular materials with a negative Poisson’s ratio. This paper aims to study the low-cost 3D printing capabilities and printing variations and improve…

Abstract

Purpose

Auxetics are the class of cellular materials with a negative Poisson’s ratio. This paper aims to study the low-cost 3D printing capabilities and printing variations and improve the indentation performance of the re-entrant diamond auxetic metamaterial by tuning the structural parameters that have not been reported.

Design/methodology/approach

The design of experiment strategy was adopted to study the influence of re-entrant angle, diamond angle and thickness-to-length ratio on relative density, load, stiffness and specific energy absorption (SEA) during indentation experimentally. Grey relational analysis was chosen as a multi-objective optimisation technique to optimise structural performance. Surrogate models were proposed to uphold the metamaterial’s tailorability for desired application needs. The fit and efficacy of the proposed models were tested using specific statistical techniques. The predominant deformation mechanisms observed with the alteration in structural parameters were discussed.

Findings

The improvements noticed are 48 times hike in load, 112 times improvement in stiffness and 10 times increase in SEA for optimised structures. The surrogate models are proven to predict the outputs accurately for new input parameters. In-situ displacement fields are visualised with an image processing technique.

Originality/value

To the best of the authors’ knowledge, the indentation performance of the re-entrant diamond auxetic metamaterials has not been reported and reported for the first time. The influence of geometrical parameters on the newly developed structure under concentrated loading was evaluated. The geometry-dependent printing variations associated with 3D printing have been discussed to help the user to fabricate re-entrant diamond auxetic metamaterial.

Article
Publication date: 28 February 2023

Karolina Krystyniak and Viktoriya Staneva

This study seeks to identify the main determinants of the optimal capital structure by reexamining the interpretation of the conventional set of explanatory variables used as…

Abstract

Purpose

This study seeks to identify the main determinants of the optimal capital structure by reexamining the interpretation of the conventional set of explanatory variables used as proxies for the costs and benefits of debt in the context of the dynamic tradeoff theory.

Design/methodology/approach

The authors isolate the variation in leverage due to different targets from that caused by deviations by aggregating the data across a dimension identifying firms with similar targets – credit rating category.

Findings

Contrary to theoretical priors, large and profitable rated firms have lower targets. The authors show that size and profitability proxy for non-financial risk and that, for rated firms, non-financial risk is positively correlated to the optimal leverage. The benefits of a better rating outweigh the costs of foregone tax shields for firms with relatively low non-financial risk. The authors find support for that theory in institutional trading – institutional investors do not punish highly rated firms when credit downgrades occur.

Originality/value

This paper contributes to the capital structure literature by developing a new approach based on data aggregation. This study is the first, to the authors’ knowledge, to find a positive effect of the firm's non-financial risk on target leverage among rated firms. The authors argue that the benefit of a better credit rating is an increasing function of the rating itself. The authors also contribute to the literature on the impact of credit ratings on the capital structure choices of the firm.

Details

International Journal of Managerial Finance, vol. 19 no. 5
Type: Research Article
ISSN: 1743-9132

Keywords

Open Access
Article
Publication date: 27 September 2023

Markus Brummer, Karl Jakob Raddatz, Matthias Moritz Schmitt, Georg Schlick, Thomas Tobie, Rüdiger Daub and Karsten Stahl

Numerous metals can be processed using the additive manufacturing process laser-based powder bed fusion of metals (PBF-LB/M, ISO/ASTM 52900). The main advantages of additive…

Abstract

Purpose

Numerous metals can be processed using the additive manufacturing process laser-based powder bed fusion of metals (PBF-LB/M, ISO/ASTM 52900). The main advantages of additive manufacturing technologies are the high degree of design freedom and the cost-effective implementation of lightweight structures. This could be profitable for gears with increased power density, combining reduced mass with considerable material strength. Current research on additively manufactured gears is focused on developing lightweight structures but is seldom accompanied by simulations and even less by mechanical testing. There has been very little research into the mechanical and material properties of additively manufactured gears. The purpose of this study is to investigate the behavior of lightweight structures in additively manufactured gears under static loads.

Design/methodology/approach

This research identifies the static load-carrying capacity of helical gears with different lightweight structures produced by PBF-LB/M with the case hardening steel 16MnCr5. A static gear loading test rig with a maximum torque at the pinion of T1 = 1200 Nm is used. Further focus is set on analyzing material properties such as the relative density, microstructure, hardness depth profile and chemical composition.

Findings

All additively manufactured gear variants show no failure or plastic deformation at the maximum test load. The shaft hub connection, the lightweight hub designs and the gearing itself are stable and intact regarding their form and function. The identified material characteristics are comparable to conventionally manufactured gears (wrought and machined), but also some particularities were observed.

Originality/value

This research demonstrates the mechanical strength of lightweight structures in gears. Future research needs to consider the dynamic load-carrying capacity of additively manufactured gears.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 February 2024

Mohan Kumar K and Arumaikkannu G

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices…

Abstract

Purpose

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices ranging from bending to stretch-dominated structures using selective laser sintering (SLS).

Design/methodology/approach

Three bending and two stretch-dominated unit cells were selected based on the Maxwell stability criterion. Lattices were designed with three RD and fabricated by SLS technique using PA12 material. Quasi-static compression tests with three strain rates were carried out using Taguchi's L9 experiments. The lattice compressive behaviour was verified with the Gibson–Ashby analytical model.

Findings

It has been observed that RD and strain rates played a vital role in lattice compressive properties by controlling failure mechanisms, resulting in distinct post-yielding responses as fluctuating and stable hardening in the plateau region. Analysis of variance (ANOVA) displayed the significant impact of RD and emphasised dissimilar influences of strain rate that vary to cell topology. Bending-dominated lattices showed better compressive properties than stretch-dominated lattices. The interesting observation is that stretch-dominated lattices with over-stiff topology exhibited less compressive properties contrary to the Maxwell stability criterion, whereas strain rate has less influence on the SEA of face-centered and body-centered cubic unit cells with vertical and horizontal struts (FBCCXYZ).

Practical implications

This comparative study is expected to provide new prospects for designing end-user parts that undergo various impact conditions like automotive bumpers and evolving techniques like hybrid and functionally graded lattices.

Originality/value

To the best of the authors' knowledge, this is the first work that relates the strain rate with compressive properties and also highlights the lattice behaviour transformation from ductile to brittle while the increase of RD and strain rate analytically using the Gibson–Ashby analytical model.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 April 2023

Mohammed Tahi, Mohamed Chikhaoui and Mohamed Chabaat

Monobloc sleepers have several problems related to bending cracking, especially longitudinal cracking and cracking at rail seat under preload release. Therefore, the purpose of…

28

Abstract

Purpose

Monobloc sleepers have several problems related to bending cracking, especially longitudinal cracking and cracking at rail seat under preload release. Therefore, the purpose of this study is to describe the behavior and cracking mode of prestressed concrete railroad sleepers under static loads using the positive test. Experimental tests followed by 3-D numerical models were performed of the same test.

Design/methodology/approach

Two steel supports were placed on the rail seat. During a progressive loading, the initiated cracks had approximately the same amplitude as those obtained from the numerical model. The type of cracking depends on the intensity of the applied static load and the loading rate. A validated three-dimensional digital model was established. The obtained results showed a perfect resemblance to the experimental tests. The final design was optimized and verified using a validated numerical simulation.

Findings

At low static loading levels, the first flexural shear cracks appeared at a vertical position located between the two steel supports. At higher static loading levels, bending shear cracks have occurred. The latter are inclined at the steel supports. It was proven that for higher loading levels, shear cracks were the primary mode of failure.

Research limitations/implications

Owing to the sensitivity of monobloc sleepers to technology production, the results are limited by the maximal loading and press used.

Practical implications

Numerical modeling greatly reduces uncertainties in laboratory testing and is an important tool for visualizing and quantifying rail seat cracks to understand behavior and predict collapse.

Social implications

Ensuring human life during rail operations is one of our the long-term priorities. This cannot be done unless the authors manage to master the manufacturing tool for sleepers while controlling the limitation of crack propagation.

Originality/value

The three-dimensional numerical established model has been checked and validated against the experimental results using the positive test to understand the behavior and the cracking mode of prestressed concrete railroad sleepers under static loads. The proposed numerical model has been more refined for a later more complex application by reducing the computation time.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 1000