Search results

1 – 10 of 987
Article
Publication date: 29 September 2022

Maria Babar, Habib Ahmad and Imran Yousaf

This study examines the information transmission (return and volatility spillovers) among energy commodities (crude oil, natural gas, Brent oil, heating oil, gasoil, gasoline) and…

Abstract

Purpose

This study examines the information transmission (return and volatility spillovers) among energy commodities (crude oil, natural gas, Brent oil, heating oil, gasoil, gasoline) and Asian stock markets which are net importers of energy (China, India, Indonesia, Malaysia, Korea, Pakistan, Philippines, Taiwan, Thailand).

Design/methodology/approach

The information transmission is investigated by employing the spillover index of Diebold and Yilmaz, using daily data for the period January 2000 to May 2021.

Findings

A Strong connectedness is documented between the two classes of asset, especially during crisis periods. Our findings reveal that most of the energy markets, except gasoil and natural gas, are net transmitters of information, whereas all the stock markets, excluding Indonesia and Korea, are net recipients.

Practical implications

The findings are helpful for portfolio managers and institutional investors allocating funds to various asset classes in times of crisis.

Originality/value

All data is original.

Details

Asia-Pacific Journal of Business Administration, vol. 16 no. 2
Type: Research Article
ISSN: 1757-4323

Keywords

Article
Publication date: 4 April 2024

Tassadit Hermime, Abdelghani Seghir and Smail Gabi

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several…

Abstract

Purpose

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several accelerograms.

Design/methodology/approach

Finite element analysis is conducted using the Plaxis 2D software to generate the numerical model of quay wall. The extension of berth 25 at the port of Bejaia, located in northeastern Algeria, represents a case study. Incremental dynamic analyses are carried out to examine variation of the main response parameters under seismic excitations with increasing Peak ground acceleration (PGA) levels. Two global damage indices based on the safety factor and bending moment are introduced to assess the relationship between PGA and the damage levels.

Findings

The results obtained indicate that the sheet pile quay wall can safely withstand seismic loads up to PGAs of 0.35 g and that above 0.45 g, care should be taken with the risk of reaching the ultimate moment capacity of the steel sheet pile. However, for PGAs greater than 0.5 g, it was clearly demonstrated that the excessive deformations with material are likely to occur in the soil layers and in the structural elements.

Originality/value

The main contribution of the present work is a new double seismic damage index for a steel sheet pile supported quay wharf. The numerical modeling is first validated in the static case. Then, the results obtained by performing several incremental dynamic analyses are exploited to evaluate the degradation of the soil safety factor and the seismic capacity of the pile sheet wall. Computed values of the proposed damage indices of the considered quay wharf are a practical helping tool for decision-making regarding the seismic safety of the structure.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 November 2023

Rituraj Raut, Savitri Jadhav and Nathrao B. Jadhav

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different…

Abstract

Purpose

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different materials for different components that too without compromising strength.

Design/methodology/approach

A 3D computer-aided design (CAD) model of a hexacopter with a regular hexagonal frame is presented. Furthermore, a finite element model is developed to perform a structural analysis and determine Von Mises stress and strain values along with deformations of different components of the proposed hexacopter design.

Findings

The results establish that carbon fibre outperforms acrylonitrile butadiene (ABS) with respect to deformations. Within the permissible limits of the stress and strain values, both carbon fiber and ABS are suggested for different components. Thus, a proposed hexacopter offers lighter weight, high strength and low cost.

Originality/value

The use of different materials for different components is suggested by making use of static structural analysis. This encourages new research work and helps in developing new applications of hexacopter, and it has never been reported in literature. The suggested materials for the components of the hexacopter will prove to be suitable considering weight, strength and cost.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 25 January 2024

Guibin Tan, Jinfu Li, Cheng Zhou, Ziwei Luo, Xing Huang and Fei Guo

This paper aims to focus on the high-speed rotary lip seal in aircraft engines, combining its service parameters, its own structure and application conditions, to study the…

Abstract

Purpose

This paper aims to focus on the high-speed rotary lip seal in aircraft engines, combining its service parameters, its own structure and application conditions, to study the influence of different eccentric forms, eccentricity, rotational speed and other factors on the performance of the rotary lip seal.

Design/methodology/approach

A numerical simulation model for high-speed eccentric rotary lip seals has been developed based on the theory of elastic hydrodynamic lubrication. This model comprehensively considers the coupling of multiple physical fields, including interface hydrodynamics, macroscopic solid mechanics and surface microscopic contact mechanics, under the operating conditions of rotary lip seals. The model takes into account eccentricity and uses the hazardous cross-sectional method to quantitatively predict sealing performance parameters, such as leakage rate and friction force.

Findings

Eccentricity has a large impact on lip seal performance; lips are more susceptible to wear failure under static eccentricity and to leakage failure under dynamic eccentricity.

Originality/value

This study provides a new idea for the design of rotary lip seal considering eccentricity, which is of guiding significance for the engineering application of rotary lip seal.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 November 2023

Diego Gabriel Metz, Roberto Dalledone Machado, Marcos Arndt and Carlos Eduardo Rossigali

Realistic composite vehicles with 2, 3, 5 and 9 axles, consisting of a truck with one or two trailers, are addressed in this paper by computational models for vehicle–bridge…

Abstract

Purpose

Realistic composite vehicles with 2, 3, 5 and 9 axles, consisting of a truck with one or two trailers, are addressed in this paper by computational models for vehicle–bridge interaction analysis.

Design/methodology/approach

The vehicle–bridge interaction (VBI) models are formed by sets of 2-D rigid blocks interconnected by mass, damping and stiffness elements to simulate their suspension system. The passage of the vehicles is performed at different speeds. Several rolling surface profiles are admitted, considering the maintenance grade of the pavement. The spectral density functions are generated from an experimental database to form the longitudinal surface irregularity profiles. A computational code written in Phyton based on the finite element method was developed considering the Euler–Bernoulli beam model.

Findings

Several models of composite heavy vehicles are presented as manufactured and currently travel on major roads. Dynamic amplification factors are presented for each type of composite vehicle.

Research limitations/implications

The VBI models for compound heavy vehicles are 2-D.

Social implications

This work contributes to improving the safety and lifetime of the bridges, as well as the stability and comfort of the vehicles when passing over a bridge.

Originality/value

The structural response of the bridge is affected by the type and size of the compound vehicles, their speed and the conservative grade of the pavement. Moreover, one axle produces vibrations that can be superposed by the vibrations of the other axles. This effect can generate not usual dynamic responses.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 February 2024

Ehab Samir Mohamed Mohamed Soliman

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this…

34

Abstract

Purpose

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this paper was to obtain a composite lifting lug with a higher level of strength that is capable of carrying loads without failure.

Design/methodology/approach

The vibration and static behaviors of steel and composite lifting lugs have been investigated using finite element analysis (FEA), ANSYS software. The main consideration in the design of the composite (CFRP) lifting lug was that the displacement of both steel and composite lugs was the same under the same load. Hence, by using the FEA displacement result of the steel lifting lug, the thickness of the composite lifting lug is determined using FEA.

Findings

Compared to the steel lifting lug, the composite (CFRP) lifting lug has much lower stresses and much higher natural frequencies. Static behavior was experienced by the composite lifting lug, showing a reduction in von Mises stress, third principal stress and XZ shear stress, respectively, by 48.4%, 34.6% and 89.8%, respectively, when compared with the steel lifting lug. A higher natural frequency of mode shape swaying in X (258.976√1,000 Hz) was experienced by the composite lifting lug when compared to the steel lifting lug (195.935√1,000 Hz). The safe strength of the design composite lifting lug has been proven by FEA results, which showed that the composite (CFRP) lifting lug has a higher factor of safety in all developed stresses than the steel lifting lug. According to von Mises stress, the factor of safety of the composite lifting lug is increased by 76% when compared to the steel lifting lug. The von Mises stress at the edge of the hole in the composite lifting lug is reduced from 23.763 MPa to 20.775 MPa when compared to the steel lifting lug.

Originality/value

This work presents the designed composite (CFRP) lifting lug, which will be able to carry loads with more safety than a steel one.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 5 April 2024

Mike G. Tsionas

In this chapter, we consider the possibility that a firm may use costly resources to improve its technical efficiency. Results from static analyses imply that technical efficiency…

Abstract

In this chapter, we consider the possibility that a firm may use costly resources to improve its technical efficiency. Results from static analyses imply that technical efficiency is determined by the configuration of factor prices. A dynamic model of the firm is developed under the assumption that managerial skill contributes to technical efficiency. Dynamic analysis shows that the firm can never be technically efficient if it maximizes profits, the steady state is always inefficient, and it is locally stable. In terms of empirical analysis, we show how likelihood-based methods can be used to uncover, in a semi-non-parametric manner, important features of the inefficiency-management relationship using a flexible functional form accounting for the endogeneity of inputs in a production function. Managerial compensation can also be identified and estimated using the new techniques. The new empirical methodology is applied in a data set previously analyzed by Bloom and van Reenen (2007) on managerial practices of manufacturing firms in the UK, US, France and Germany.

Article
Publication date: 11 January 2024

Vahid Lotfi and Hesamedin Abdorazaghi

The response of the Pine Flat dam–water–foundation rock system is studied by a new described approach (i.e. FE-(FE-TE)-FE). The initial part of study is focused on the time…

Abstract

Purpose

The response of the Pine Flat dam–water–foundation rock system is studied by a new described approach (i.e. FE-(FE-TE)-FE). The initial part of study is focused on the time harmonic analysis. In this part, it is possible to compare the transfer functions against corresponding responses obtained by the FE-(FE-HE)-FE approach (referred to as exact method which employs a rigorous fluid hyper-element). Subsequently, the transient analysis is carried out. In that part, it is only possible to compare the results for low and high normalized reservoir length cases. Therefore, the sensitivity of results is controlled due to normalized reservoir length values.

Design/methodology/approach

In the present study, dynamic analysis of a typical concrete gravity dam–water–foundation rock system is formulated by the FE-(FE-TE)-FE approach. In this technique, dam and foundation rock are discretized by plane solid finite elements while, water domain near-field region is discretized by plane fluid finite elements. Moreover, the H-W (i.e. Hagstrom–Warburton) high-order condition is imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model.

Findings

High orders of H-W condition, such as O5-5 considered herein, generate highly accurate responses for both possible excitations under both types of full reflective and absorptive reservoir bottom conditions. It is such that transfer functions are hardly distinguishable from corresponding exact responses obtained through the FE-(FE-HE)-FE approach in time harmonic analyses. This is controlled for both low and high normalized reservoir length cases (L/H = 1 and 3). Moreover, it can be claimed that transient analysis leads practically to exact results (in numerical sense) when one is employing high order H-W truncation element. In other words, the results are not sensitive to reservoir normalized length under these circumstances.

Originality/value

Dynamic analysis of concrete gravity dam–water–foundation rock systems is formulated by a new method. The salient aspect of the technique is that it utilizes H-W high-order condition at the truncation boundary. The method is discussed for all types of excitation and reservoir bottom conditions.

Open Access
Article
Publication date: 15 November 2023

Ahlem Lamine, Ahmed Jeribi and Tarek Fakhfakh

This study analyzes the static and dynamic risk spillover between US/Chinese stock markets, cryptocurrencies and gold using daily data from August 24, 2018, to January 29, 2021…

Abstract

Purpose

This study analyzes the static and dynamic risk spillover between US/Chinese stock markets, cryptocurrencies and gold using daily data from August 24, 2018, to January 29, 2021. This study provides practical policy implications for investors and portfolio managers.

Design/methodology/approach

The authors use the Diebold and Yilmaz (2012) spillover indices based on the forecast error variance decomposition from vector autoregression framework. This approach allows the authors to examine both return and volatility spillover before and after the COVID-19 pandemic crisis. First, the authors used a static analysis to calculate the return and volatility spillover indices. Second, the authors make a dynamic analysis based on the 30-day moving window spillover index estimation.

Findings

Generally, results show evidence of significant spillovers between markets, particularly during the COVID-19 pandemic. In addition, cryptocurrencies and gold markets are net receivers of risk. This study provides also practical policy implications for investors and portfolio managers. The reached findings suggest that the mix of Bitcoin (or Ethereum), gold and equities could offer diversification opportunities for US and Chinese investors. Gold, Bitcoin and Ethereum can be considered as safe havens or as hedging instruments during the COVID-19 crisis. In contrast, Stablecoins (Tether and TrueUSD) do not offer hedging opportunities for US and Chinese investors.

Originality/value

The paper's empirical contribution lies in examining both return and volatility spillover between the US and Chinese stock market indices, gold and cryptocurrencies before and after the COVID-19 pandemic crisis. This contribution goes a long way in helping investors to identify optimal diversification and hedging strategies during a crisis.

Details

Journal of Economics, Finance and Administrative Science, vol. 29 no. 57
Type: Research Article
ISSN: 2077-1886

Keywords

1 – 10 of 987