Search results

1 – 10 of over 1000
Article
Publication date: 11 August 2021

Bin Zheng, Yi Cai and Kelun Tang

The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the…

Abstract

Purpose

The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine.

Design/methodology/approach

The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization.

Findings

After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased.

Originality/value

This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 10 April 2023

Alberto Cusi, Antonella Ferri, Alessandra Micozzi and Maria Palazzo

Stemming from the resource-based view (RBV) approach, this article overcomes the limits of the conventional strengths, weaknesses, opportunities and threats (SWOT) analysis…

Abstract

Purpose

Stemming from the resource-based view (RBV) approach, this article overcomes the limits of the conventional strengths, weaknesses, opportunities and threats (SWOT) analysis, setting the basis for the model actual–potential, positive–negative, internal–external (APPNIE). This paper enacts a new framework demonstrating how strengths, weaknesses, opportunities and threats of SWOT can be replaced by actual or potential, positive or negative elements, considered in a dynamic way.

Design/methodology/approach

The traditional SWOT analysis provides only a partial view of the environment and adopts incorrect terminology that can confuse the user, preventing a clear understanding of the factors affecting the organisation’s situation. The authors developed a new tool to help managers in their decision-making processes.

Findings

This study proposes a new tool for assessing the quality of management, resources and environment, which is useful in understanding the economic and social scenario in which a firm is embedded. From a practical point of view, the new tool is applied in the case study, and it shows how managers and students can use it while choosing between alternative options (different strategies, markets, technologies, etc.).

Originality/value

The APPNIE model introduces a new dimension that the SWOT analysis does not consider. Moreover, for each element of the new matrix, the authors propose a plan of action, which is another valuable benefit of the APPNIE model.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 28 July 2023

Mohammad A. Gharaibeh

This paper aims to compare and evaluate the influence of package designs and characteristics on the mechanical reliability of electronic assemblies when subjected to harmonic…

Abstract

Purpose

This paper aims to compare and evaluate the influence of package designs and characteristics on the mechanical reliability of electronic assemblies when subjected to harmonic vibrations.

Design/methodology/approach

Using finite element analysis (FEA), the effect of package design-related parameters, including the interconnect array configuration, i.e. full vs perimeter, and package size, on solder mechanical stresses are fully addressed.

Findings

The results of FEA simulations revealed that the number of solder rows or columns available in the array, could significantly affect solder stresses. In addition, smaller packages result in lower solder stresses and differing distributions.

Originality/value

In literature, there are no papers that discuss the effect of solder array layout on electronic packages vibration reliability. In addition, general rules for designing electronic assemblies subjected to harmonic vibration loadings are proposed in this paper.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 4 April 2024

Tassadit Hermime, Abdelghani Seghir and Smail Gabi

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several…

Abstract

Purpose

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several accelerograms.

Design/methodology/approach

Finite element analysis is conducted using the Plaxis 2D software to generate the numerical model of quay wall. The extension of berth 25 at the port of Bejaia, located in northeastern Algeria, represents a case study. Incremental dynamic analyses are carried out to examine variation of the main response parameters under seismic excitations with increasing Peak ground acceleration (PGA) levels. Two global damage indices based on the safety factor and bending moment are introduced to assess the relationship between PGA and the damage levels.

Findings

The results obtained indicate that the sheet pile quay wall can safely withstand seismic loads up to PGAs of 0.35 g and that above 0.45 g, care should be taken with the risk of reaching the ultimate moment capacity of the steel sheet pile. However, for PGAs greater than 0.5 g, it was clearly demonstrated that the excessive deformations with material are likely to occur in the soil layers and in the structural elements.

Originality/value

The main contribution of the present work is a new double seismic damage index for a steel sheet pile supported quay wharf. The numerical modeling is first validated in the static case. Then, the results obtained by performing several incremental dynamic analyses are exploited to evaluate the degradation of the soil safety factor and the seismic capacity of the pile sheet wall. Computed values of the proposed damage indices of the considered quay wharf are a practical helping tool for decision-making regarding the seismic safety of the structure.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 20 June 2022

Achraf Ghorbel, Sahar Loukil and Walid Bahloul

This paper analyzes the connectedness with network among the major cryptocurrencies, the G7 stock indexes and the gold price over the coronavirus disease 2019 (COVID-19) pandemic…

2347

Abstract

Purpose

This paper analyzes the connectedness with network among the major cryptocurrencies, the G7 stock indexes and the gold price over the coronavirus disease 2019 (COVID-19) pandemic period, in 2020.

Design/methodology/approach

This study used a multivariate approach proposed by Diebold and Yilmaz (2009, 2012 and 2014).

Findings

For a stock index portfolio, the results of static connectedness showed a higher independence between the stock markets during the COVID-19 crisis. It is worth noting that in general, cryptocurrencies are diversifiers for a stock index portfolio, which enable to reduce volatility especially in the crisis period. Dynamic connectedness results do not significantly differ from those of the static connectedness, the authors just mention that the Bitcoin Gold becomes a net receiver. The scope of connectedness was maintained after the shock for most of the cryptocurrencies, except for the Dash and the Bitcoin Gold, which joined a previous level. In fact, the Bitcoin has always been the biggest net transmitter of volatility connectedness or spillovers during the crisis period. Maker is the biggest net-receiver of volatility from the global system. As for gold, the authors notice that it has remained a net receiver with a significant increase in the network reception during the crisis period, which confirms its safe haven.

Originality/value

Overall, the authors conclude that connectedness is shown to be conditional on the extent of economic and financial uncertainties marked by the propagation of the coronavirus while the Bitcoin Gold and Litecoin are the least receivers, leading to the conclusion that they can be diversifiers.

研究目的

本文分析於2020年2019冠狀病毒病肆虐期間、主要的加密貨幣、七國集團 (G7) 股價指數與黃金價格三者之間在網絡上的連通性。

研究設計/方法/理念

分析使用迪博爾德和耶爾馬茲 (Diebold and Yilmaz (2009, 2012, 2014)) 提出的多變量分析法。

研究結果

就一個股票指數投資組合而言,靜態連結的結果顯示、在2019冠狀病毒病肆虐期間,股票市場之間有更高的獨立性。值得我們注意的是:一般來說,加密貨幣在股票指數投資組合起著多元化投資作用,這可減低不穩定性,尤其是在危機時期。動態連結的結果與靜態連結的結果沒有顯著的分別。我們剛提到、比特幣黃金已成為純接收者。除了處於先前水平的達世幣和比特幣黃金外,就大部分的加密貨幣而言,連通的範圍在衝擊後都得以維持。事實上,在這危機時期,比特幣一直是波動性連結或溢出的最大淨傳播者。掛單者 (Maker) 是從全球系統中出現的最大波動淨接收者。至於黃金,我們注意到在危機時期、它仍然是在網絡接收方面擁有顯著增長的淨接收者,這確認其為安全的避難所。

研究的原創性/價值

總的來說,我們的結論是:連通性被確認為取決於標誌著受廣泛傳播的冠狀病毒影響下的經濟和金融欠缺穩定的程度,而比特幣黃金和萊特幣則是最小的接收者,這帶出一個結論、就是:比特幣黃金和萊特幣、可以成為多元化投資項目。

Details

European Journal of Management and Business Economics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2444-8451

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 February 2024

Ehab Samir Mohamed Mohamed Soliman

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this…

32

Abstract

Purpose

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this paper was to obtain a composite lifting lug with a higher level of strength that is capable of carrying loads without failure.

Design/methodology/approach

The vibration and static behaviors of steel and composite lifting lugs have been investigated using finite element analysis (FEA), ANSYS software. The main consideration in the design of the composite (CFRP) lifting lug was that the displacement of both steel and composite lugs was the same under the same load. Hence, by using the FEA displacement result of the steel lifting lug, the thickness of the composite lifting lug is determined using FEA.

Findings

Compared to the steel lifting lug, the composite (CFRP) lifting lug has much lower stresses and much higher natural frequencies. Static behavior was experienced by the composite lifting lug, showing a reduction in von Mises stress, third principal stress and XZ shear stress, respectively, by 48.4%, 34.6% and 89.8%, respectively, when compared with the steel lifting lug. A higher natural frequency of mode shape swaying in X (258.976√1,000 Hz) was experienced by the composite lifting lug when compared to the steel lifting lug (195.935√1,000 Hz). The safe strength of the design composite lifting lug has been proven by FEA results, which showed that the composite (CFRP) lifting lug has a higher factor of safety in all developed stresses than the steel lifting lug. According to von Mises stress, the factor of safety of the composite lifting lug is increased by 76% when compared to the steel lifting lug. The von Mises stress at the edge of the hole in the composite lifting lug is reduced from 23.763 MPa to 20.775 MPa when compared to the steel lifting lug.

Originality/value

This work presents the designed composite (CFRP) lifting lug, which will be able to carry loads with more safety than a steel one.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 March 2024

Muhammed Turan Aslan, Bahattin Kanber, Hasan Demirtas and Bilal Sungur

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Abstract

Purpose

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Design/methodology/approach

An experimental setup was designed, experiments were conducted and the obtained results were compared with the finite element results. The deformations were measured according to various flow rates of electrolyte. In finite element calculations, the pressure distribution created by the electrolyte on the blade surface was obtained in the ANSYS® (A finite element analysis software) Fluent software and transferred to the static structural where the deformation analysis was carried out. Three different parameters were examined, namely blade thickness, blade material and electrolyte pressure on blade disk caused by mass flow rate. The deformation results were compared with the gap distances between cathode and anode.

Findings

Large deformations were obtained at the free end of the blade and the most curved part of it. The appropriate pressure values for the electrolyte to be used in the production of blisk blades were proposed numerically. It has been determined that high pressure applications are not suitable for gap distance lower than 0.5 mm.

Originality/value

When the literature is examined, it is required that the high speed flow of the electrolyte is desired in order to remove the parts that are separated from the anode from the machining area during electrochemical machining. However, the electrolyte flowing at high speeds causes high pressure in the blisk blades, excessive deformation and vibration of the machined part, and as a result, contact of the anode with the cathode. This study provides important findings for smooth electro chemical machining at high electrolyte flows.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 August 2023

Samir Ouchene, Arezki Smaili and Hachimi Fellouah

This paper aims to investigate the problem of estimating the angle of attack (AoA) and relative velocity for vertical axis wind turbine (VAWT) blades from computational fluid…

Abstract

Purpose

This paper aims to investigate the problem of estimating the angle of attack (AoA) and relative velocity for vertical axis wind turbine (VAWT) blades from computational fluid dynamics data.

Design/methodology/approach

Two methods are implemented as function objects within the OpenFOAM framework for estimating the blade’s AoA and relative velocity. For the numerical analysis of the flow around and through the VAWT, 2 D unsteady Reynolds-averaged Navier–Stokes (URANS) simulations are carried out and validated against experimental data.

Findings

To gain a better understanding of the complex flow features encountered by VAWT blades, the determination of the AoA is crucial. Relying on the geometrically-derived AoA may lead to wrong conclusions about blade aerodynamics.

Practical implications

This study can lead to the development of more robust optimization techniques for enhancing the variable-pitch control mechanism of VAWT blades and improving low-order models based on the blade element momentum theory.

Originality/value

Assessment of the reliability of AoA and relative velocity estimation methods for VAWT’ blades at low-Reynolds numbers using URANS turbulence models in the context of dynamic stall and blade–vortex interactions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 April 2023

SVKSV Krishna Kiran Poodipeddi, Amarthya Singampalli, Lalith Sai Madhav Rayala and Surya Sudarsan Naveen Ravula

The purpose of this study is to follow up on the structural and fatigue analysis of car wheel rims with carbon fibre composites in order to ensure the vehicular safety. The wheel…

Abstract

Purpose

The purpose of this study is to follow up on the structural and fatigue analysis of car wheel rims with carbon fibre composites in order to ensure the vehicular safety. The wheel is an essential element of the vehicle suspension system that supports the static and dynamic loads encountered during its motion. The rim provides a firm base to hold the tire and supports the wheel, and it is also one of the load-bearing elements in the entire automobile as the car's weight and occupants' weight act upon it. The wheel rim should be strong enough to withstand the load with such a background, ensuring vehicle safety, comfort and performance. The dimensions, shape, structure and material of the rim are crucial factors for studying vehicle handling characteristics that demand automobile designers' concern.

Design/methodology/approach

In the present study, solid models of three different wheel rims, namely, R-1, R-2 and R-3, designed for three different cars, are modelled in SOLIDWORKS. Different carbon composite materials of polyetheretherketone (PEEK), namely, PEEK 90 HMF 40, PEEK 450 CA 30, PEEK 450 GL 40 and carbon fibre reinforced polymer-unidirectional (CFRP-UD) are used as rim materials for conducting the structural and fatigue analysis using ANSYS Workbench.

Findings

The results thus obtained in the analyses are used to identify the better carbon fibre composite material for the wheel rim such that it gives better structural properties and less fatigue. The R-3 model rim has shown better structural properties and less fatigue with PEEK 90 HMF 40 material.

Originality/value

The carbon composite materials used in this study have shown promissory results that can be used as an alternative for aluminium, steel and other regular materials.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 1000