Search results

1 – 10 of over 16000
Article
Publication date: 1 September 2005

M.J. Chern, A.G.L. Borthwick and R. Eatock Taylor

The research is directed at development of an efficient and accurate technique for modelling incompressible free surface flows in which viscous effects may not be neglected. The…

1093

Abstract

Purpose

The research is directed at development of an efficient and accurate technique for modelling incompressible free surface flows in which viscous effects may not be neglected. The paper describes the methodology, and gives illustrative results for simple geometries.

Design/methodology/approach

The pseudospectral matrix element method of discretisation is selected as the basis for the CFD technique adopted, because of its high spectral accuracy. It is implemented as a means of solving the Navier‐Stokes equations coupled with the modified compressibility method.

Findings

The viscous solver has been validated for the benchmark cases of uniform flow past a cylinder at a Reynolds number of 40, and 2D cavity flows. Results for sloshing of a viscous fluid in a tank have been successfully compared with those from a linearised analytical solution. Application of the method is illustrated by the results for the interaction of an impulsive wave with a surface piercing circular cylinder in a cylindrical tank.

Research limitations/implications

The paper demonstrates the viability of the approach adopted. The limitation of small amplitude waves should be tackled in future work.

Practical implications

The results will have particular significance in the context of validating computations from more complex schemes applicable to arbitrary geometries.

Originality/value

The new methodology and results are of interest to the community of those developing numerical models of flow past marine structures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 October 2019

Mansoor Ahmad, Ayhan Bozkurt and Omid Farhanieh

This paper aims to Separation and sorting of biological cells is desirable in many applications for analyzing cell properties, such as disease diagnostics, drugs delivery…

326

Abstract

Purpose

This paper aims to Separation and sorting of biological cells is desirable in many applications for analyzing cell properties, such as disease diagnostics, drugs delivery, chemical processing and therapeutics.

Design/methodology/approach

Acoustic energy-based bioparticle separation is a simple, viable, bio-compatible and contact-less technique using, which can separate the bioparticles based on their density and size, with-out labeling the sample particles.

Findings

Conventionally available bioparticle separation techniques as fluorescence and immunomagnetic may cause a serious threat to the life of the cells due to various compatibility issues. Moreover, they also require an extra pre-processing labeling step. Contrarily, label-free separation can be considered as an alternative solution to the traditional bio-particle separation methods, due to their simpler operating principles and lower cost constraints. Acoustic based particle separation methods have captured a lot of attention among the other reported label-free particle separation techniques because of the numerous advantages it offers.

Practical implications

This study tries to briefly cover the developments of different acoustic-based particle separation techniques over the years. Unlike the conventional surveys on general bioparticles separation, this study is focused particularly on the acoustic-based particle separation. The study would provide a comprehensive guide for the future researchers especially working in the field of the acoustics, in studying and designing the acoustic-based particle separation techniques.

Originality/value

The study insights a brief theory of different types of acoustic waves and their interaction with the bioparticles is considered, followed by acoustic-based particle separation devices reported till the date. The integration of acoustic-based separation techniques with other methods and with each other is also discussed. Finally, all major aspects like the approach, and productivity, etc., of the adopted acoustic particle separation methods are sketched in this article.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 May 2020

Wei Sun, Shuai Yang, Junnan Gao and Xianfei Yan

It is very important to create a useful cyclic symmetric model for the investigation of the vibration reduction effect of hard-coating blisk. This study aims to develop a cyclic…

96

Abstract

Purpose

It is very important to create a useful cyclic symmetric model for the investigation of the vibration reduction effect of hard-coating blisk. This study aims to develop a cyclic symmetry algorithm which can determine the mode of blisk in the sector coordinate system directly.

Design/methodology/approach

Using the exponential and real quasi-equivalent Fourier matrices, the formulas for solving the sector mode were derived, and the relationship between the two kinds of sector modes was also discussed. Based on the proposed cyclic symmetry algorithm, the vibration characteristics of an academic blisk were solved, and the formulas for solving the natural characteristics and vibration responses of the coated blisk were given.

Findings

A blisk with NiCrAlCoY+YSZ hard coating on both sides of each blade was chosen as a case to demonstrate the presented method. Based on the verification analysis model, the influences of coating thickness on the vibration reduction effect of the blisk were discussed. The results show that the hard coating has good vibration reduction effect on the blisk even the coating thickness is very thin and the vibration reduction effect of hard coating in the high frequency range is obviously better than that in the low frequency range.

Originality/value

As a large number of reduced order modeling methods of blisk are implemented based on the sector modes, the proposed method which can obtain the sector modes directly will significantly improve the efficiency of dynamic modeling and analysis of the coated blisk structure.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 November 2016

Abdelkader Frendi and Michael R. Brown

The purpose of this paper is to carry out an extensive numerical study in order to understand the flow structures and the resulting noise generated by a supersonic impinging jet…

Abstract

Purpose

The purpose of this paper is to carry out an extensive numerical study in order to understand the flow structures and the resulting noise generated by a supersonic impinging jet on a flat plate. One of the parameters varied in this study is the distance between the jet exit plane and the flat plate.

Design/methodology/approach

Because of the unsteady nature of the problem a time-dependent computation is carried out using the detached eddy simulation turbulence model. The OVERFLOW 2 CFD code was used with a highly resolved grid and small time steps.

Findings

The authors found that as the separation distance increases, the dominant frequencies in the noise spectrum decrease. In addition, the relative strength of the various frequencies to each other changes with changing distance, indicating the changing modes of the jet. The CFD results indicate a strong interaction between the acoustic waves emanating from the impingement plate and the jet plume. This feedback mechanism is responsible for destabilizing the jet shear layer leading to the jet changing modes. The computed near field spectra, convection velocities of the jet vortical structures and mean jet centerline velocity profile are in good agreement with experimental measurements. The results also show very high sound pressure levels all over the impingement plate but especially near the impingement point. These levels, if sustained, are detrimental to both human operators as well as the surrounding structures.

Research limitations/implications

Given the large-scale nature of the computations carried out, it is very costly to run the computations long enough to collect a good, statistically steady time sample to achieve a low frequency bandwidth resolution. Such a long time sample could actually improve the results in terms of frequency resolution and obtained an even better agreement with experiments. Off course there is always the issue of grid resolution as well, but given the good agreement with experiments that the authors obtained, the authors are confident in their results.

Practical implications

The practical implications of the results the authors obtained are significant in that, the authors now know that hybrid RANS-large eddy simulation methods can be used for this complex, unsteady engineering problems. In addition, the results also show the high noise level both on the impingement surface and in the surroundings of the jet. This could have a negative impact on the structural integrity of the flat surface.

Social implications

Noisy environments are never desirable anywhere especially in places where human operations take place. Therefore, given the high noise levels obtained in the simulations and confirmed by experiments, any human presence around the jet will be harmful to hearing and precautions need to be taken.

Originality/value

This is a physics-based study; i.e. understanding the physical phenomena involved in supersonic jet impingement. Of particular interest is the interaction of the jet shear layer with the acoustic waves emanating from the impingement area. This feedback loop is found to be responsible for intensifying the instability of the jet shear layer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 December 2020

Pramod Kumar Aylapogu, Madhu Sudan Donga, Venkatachari D. and RamaDevi B.

The suggested antenna has a switched mechanism among the successive elements of the radiating patch. The purpose of this paper is to develop high gain and less interference at…

Abstract

Purpose

The suggested antenna has a switched mechanism among the successive elements of the radiating patch. The purpose of this paper is to develop high gain and less interference at higher frequencies.

Design/methodology/approach

The design geometry of the suggested high gain switched beam Yagi-Uda antennas. The constructed antenna has been developed with Rogers Substrate, relative permittivity (εr) of 4.4, tangent of loss 0.0009 and with height of 1.6 mm. The proposed antenna has an input impedance of 50, and it is connected to input feed line with 2 mm.

Findings

In forthcoming life, the antennas play key role in all the wireless devices, because these devices perform with high gain and high efficacy.

Originality/value

The pivotal principle of this paper is to accomplish the gain as high, high directivity and interference is low at higher frequencies. Therefore, it is more applicable to 5G mobile communications and millimeter wave communications.

Details

International Journal of Pervasive Computing and Communications, vol. 17 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 1 October 2021

J.X. Sun and P.S. Liu

The purpose of this paper is to provide an optimization schedule of structural parameters for the sound absorption performance of a cellular ceramic foam in the sound frequency…

90

Abstract

Purpose

The purpose of this paper is to provide an optimization schedule of structural parameters for the sound absorption performance of a cellular ceramic foam in the sound frequency range of 200–4,000 Hz.

Design/methodology/approach

The cellular ceramic foam with porosity of about 60–75% and the pore size of about 1–7 mm was successfully prepared by using natural zeolite powder as the main raw material. For this ceramic foam, the sound absorption performance was measured, and the absorption structure was optimized by some important structural parameters. With orthogonal experiment, optimization of structural parameters was found for absorption performance. By means of the range analysis method, the main factor is known to influence the performance of ceramic foam.

Findings

The present ceramic foam may have good absorption performance although at relatively low frequencies of 400–4,000 Hz while structural parameters of sample are appropriately combined. With orthogonal experiment, optimization of structural parameters for the absorption performance was found to be as follows: sample thickness, 25 mm; porosity, 73.5%; pore size, 4–5 mm and air gap depth, 20 mm. To influence the performance, sample thickness is the main factor, air gap depth is the second and both of pore size and porosity would have a relatively slight effect.

Originality/value

This paper presents a method to optimize the structural parameters of a cellular ceramic foam for sound absorption performance by means of orthogonal experiment.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 January 2011

Chung‐Yueh Wang, Jyh‐tong Teng and George P.G. Huang

The purpose of this paper is to develop the numerical simulated methodology for sloshing motion of fluid inside a two dimension rectangular tank, and parametric studies were…

Abstract

Purpose

The purpose of this paper is to develop the numerical simulated methodology for sloshing motion of fluid inside a two dimension rectangular tank, and parametric studies were performed for three parameters – excitation frequency, excitation amplitude, and liquid depth.

Design/methodology/approach

A numerically simulated methodology by using the cell‐centered pressure‐based SIMPLE scheme and level set method for the sloshing motion of fluid in a rectangular tank has been developed. The convection term in the Navier‐Stokes equations and the equations used in the level set method were treated by the second‐order upwind scheme. The temporal derivative terms were solved by the three‐level second order scheme. The diffusion term in the Navier‐Stokes equations alone was solved by the central‐difference scheme. All algebraic equations were solved by the point Gauss‐Seidel method. A fully implicit scheme to treat the level set distancing equation, written as the advection equation, was developed. In addition, the level set distancing equation was solved by the iterative procedure to determine the variation of free surface.

Findings

For given excitation amplitude together with a liquid depth, the free surface displacement increases when the excitation frequency is less than the resonance frequency of tank. However, the free surface displacement decreases when the excitation is greater than the resonant frequency of the tank. It is noted that the maximum free surface displacement is generated under the circumstance for which the excitation frequency approaches the resonant frequency. The excitation amplitude and the excitation frequency have a substantial effect on the impact pressure on the wall of the tank being investigated.

Originality/value

The sloshing motion of fluid in a rectangular tank has been studied by researchers and scholars using many numerical methods; however, literature employing the level set method to study the sloshing motion of fluid is limited. In this study, the cell‐centered pressure‐based SIMPLE scheme and level set method can be employed to predict the sloshing motion. The numerical methodology can help the engineer to predict sloshing motion of fluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2000

M. Lappa, R. Savino and R. Monti

The influence of buoyancy forces on oscillatory Marangoni flow in liquid bridges of different aspect ratio is investigated by three‐dimensional, time‐dependent numerical solutions…

Abstract

The influence of buoyancy forces on oscillatory Marangoni flow in liquid bridges of different aspect ratio is investigated by three‐dimensional, time‐dependent numerical solutions and by laboratory experiments using a microscale apparatus and a thermographic visualisation system. Liquid bridges heated from above and from below are investigated. The numerical and experimental results show that for each aspect ratio and for both the heating conditions the onset of the Marangoni oscillatory flow is characterized by the appearance of a standing wave regime; after a certain time, a second transition to a travelling wave regime occurs. The three‐dimensional flow organization at the onset of instability is different according to whether the bridge is heated from above or from below. When the liquid bridge is heated from below, the critical Marangoni number is larger, the critical wave number (m) is smaller and the standing wave regime is more stable, compared with the case of the bridge heated from above. For the critical azimuthal wave number, two correlation laws are found as a function of the geometrical aspect ratio A.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 March 2012

Alfin Leo, Gino Rinaldi, Ion Stiharu and Rama Bhat

It is currently difficult to measure temperature and pressure in harsh environments. Such measurements are limited by either the ability of the sensing element or the associated…

Abstract

Purpose

It is currently difficult to measure temperature and pressure in harsh environments. Such measurements are limited by either the ability of the sensing element or the associated electrical wiring to withstand the operating environment. This is unfortunate as temperature and pressure are important measurands in various engineering structures as they provide critical information on the operating condition of the structure. Hence, there is a need to address this shortcoming. Such a sensor in place would enhance the operating efficiency thereby reducing the pollution burden and its impact on the environment. The purpose of this paper is to present theoretical and preliminary experimental results for a co‐integrated pressure and temperature sensor for harsh environments.

Design/methodology/approach

This work describes a co‐integrated pressure‐temperature wireless sensing scheme. The approach presented herein provides the possibility of measuring dynamic pressure and temperature within an enclosed volume using acoustic signals. Resonance tube physics is exploited for the temperature sensing. A microphone is used to obtain the acoustic signal whose frequency is a function of the temperature and the tube geometry.

Findings

The dynamic pressure is measured from the calibrated amplitude of the pressure wave signal measured by the microphone. The temperature can be measured through the shift of the standing wave frequency with a resolution of <1°C. The resonance tube can be fabricated using any material that resists harsh environments. The geometry of the tube can be tailored for any specific frequency range, as the application warrants. Also, this provides a means for accurate temperature compensation of pressure sensor data from high temperature environments. A Matlab/Simulink model is developed and presented for the acquisition of acoustic signals through the wall of an enclosed volume. For these applications the standing wave signal transmitted through the enclosure wall becomes a function of the wall material and wall thickness. Preliminary experimental results are presented in which a DC fan is used for generating the dynamic pressure in a varying temperature environment.

Research limitations/implications

The major issue is the separation of the noise from the signal. As various applications yield specific signal noise, the problem needs detailed data to be addressed.

Practical implications

Temperature and dynamic pressure could be recorded/monitored in very harsh environment conditions such as chemical reactors.

Originality/value

This work demonstrates the possibility of employing a co‐integrated acoustic sensing scheme in which both pressure and temperature are measured simultaneously with a sole sensor. The major advantage with acoustic sensing is the wireless transmission of data. This allows for non‐invasive measurement from within enclosed systems. Direct real‐time temperature compensation is possible that does not require any compensation circuitry. Hence, pressure and temperature data may be obtained from caustic operating environments whose access is otherwise not feasible.

Article
Publication date: 1 January 1994

T. Kodama and M. Kawahara

A finite element method dealing with an open boundary condition for theanalysis of long wave problem is presented. The key feature of the method isthat spurious reflective waves…

Abstract

A finite element method dealing with an open boundary condition for the analysis of long wave problem is presented. The key feature of the method is that spurious reflective waves which occurred for the initial transient state on the open boundary can be eliminated by introducing a subdomain technique. For the numerical outflow boundary condition, the progressive wave condition, based on the shallow water long wave theory, is successfully employed. This method is quite suitable for practical analysis because of its adaptability for the arbitrary configuration of the open boundary and shape of elements adjacent to the open boundary. This method is numerically verified for flow in a one dimensional channel and the two dimensional tidal current in Tokyo Bay. The numerical results are compared with analytical solutions and observed data obtained by field measurements. These results are all in close agreement.

Details

Engineering Computations, vol. 11 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 16000