Search results

1 – 10 of 53
Article
Publication date: 27 February 2009

Ozan Kayacan and Ender Yazgan Bulgun

The purpose of this paper is to investigate the concept of “electrically conductive fabrics”. The primer applications that import electrical conductivity properties to textiles…

1210

Abstract

Purpose

The purpose of this paper is to investigate the concept of “electrically conductive fabrics”. The primer applications that import electrical conductivity properties to textiles and clothing are summarized. Also the heated fabric panels produced by steel yarns are evaluated. Single and multi‐ply steel fabrics are applied to electrical current and their heating behaviors are observed and compared.

Design/methodology/approach

The integration of electronic components with textiles to create very smart structures is getting more and more attention in recent years. Most of the textile materials are electrical insulators. Hence, various types of fibers and fabrics having reasonably good electrical conductivity are required especially for electronically functional apparel products. The textile‐based materials being flexible and easily workable are the most preferred one in such cases. In this study, the steel yarns are placed in the fabric construction owing to their flexible characteristics. The heating panels used in this study are produced by conventional textile processes and applied to electrical current. For this purpose, an electronic circuit that contains textile‐based warming panels connected to a power supply, has been developed.

Findings

The heated steel fabric panels with different number of plies provide different heating degree intervals owing to the different resistance levels, Therefore, in the applications of textile‐based heating elements it is suggested that the electrical characterization of conductive materials should be examined and the materials that have the most appropriate electrical resistance characteristic must be applied. Furthermore, in the circuits used for heating function, the current amount depends on the electrical features of heating structures. Consequently, the pads with different plies have various efficient heating in point of time. It is recommended that the appropriate heating pad dimensions, ply or conductive yarn amounts and sufficient power supply conditions should be evaluated and chosen according to the desired heating level.

Originality/value

Electrically conductive stainless steel yarns are processed to form a heating panel that can be used within an electronic circuit as a warming mechanism.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 September 2018

Sheilla Atieno Odhiambo, Piotr Fiszer, Gilbert De Mey, Carla Hertleer, Ida Nuramdhani, Lieva Van Langenhove and Andrzej Napieralski

The purpose of this paper is to develop a capacitor fully integrated into a wearable textile fabric for the application on smart clothing.

Abstract

Purpose

The purpose of this paper is to develop a capacitor fully integrated into a wearable textile fabric for the application on smart clothing.

Design/methodology/approach

A small capacitor with stainless steel yarns as the electrodes and poly-(3,4–ethylenedioxythiophene): polystryrene sulphonate (PEDOT:PSS) as the dielectric material has been made, integrated into a textile fabric. The electric performance of the capacitor was analyzed and compared with other kinds of electric capacitors.

Findings

The fabricated small, PEDOT:PSS capacitor could finally power a calculator for 37 s with the energy stored in it.

Originality/value

This finding is of an important significance for a further development on the capacitor with a better performance.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 August 2011

Yavuz Şenol, Taner Akkan, Ender Yazgan Bulgun and Ozan Kayacan

The purpose of this paper is to realize an electronic circuit design on the fabric surfaces to form a fully integrated functional active T‐shirt structure.

1696

Abstract

Purpose

The purpose of this paper is to realize an electronic circuit design on the fabric surfaces to form a fully integrated functional active T‐shirt structure.

Design/methodology/approach

Functional products combining textile, electronics and the software have attracted great attention in recent years. The integration of the electrical and electronic devices on the garment surface using conductive threads is a challenging issue considering conductiveness, long durability, washability and manufacturing process. As an application, a group of light emitting diode (LED) lights controlled by a light sensor, accelerometer and related electronic control circuits were placed on a fabric construction.

Findings

The brightness of LED lights is controlled by using a light sensor depending on the perceived ambient light intensity. LED lighting patterns are controlled by means of an accelerometer which senses the physical activities of the wearer, such as walking, running and standing.

Originality/value

In this study, new construction methods have been successfully implemented and the active T‐shirt has been realized with its related hardware and software.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 March 2019

Rafiu King Raji, Xuhong Miao, Shu Zhang, Yutian Li, Ailan Wan and Charles Frimpong

The use of conductive yarns or wires to design and construct fabric-based strain sensors is a research area that is gaining much attention in recent years. This is based on a…

Abstract

Purpose

The use of conductive yarns or wires to design and construct fabric-based strain sensors is a research area that is gaining much attention in recent years. This is based on a profound theory that conductive yarns will have a variation in resistance if subjected to tension. What is not clear is to which types of conductive yarns are most suited to delivering the right sensitivity. The purpose of this paper is to look at strain sensors knitted with conductive composite and coated yarns which include core spun, blended, coated and commingled yarns. The conductive components are stainless steel and silver coating respectively with polyester as the nonconductive part. Using Stoll CMS 530 flat knitting machine, five samples each were knitted with the mentioned yarn categories using 1×1 rib structure. Sensitivity tests were carried out on the samples. Piezoresistive response of the samples reveals that yarns with heterogeneous external structures showed both an increase and a decrease in resistance, whereas those with homogenous structures responded linearly to stress. Stainless steel based yarns also had higher piezoresistive range compared to the silver-coated ones. However, comparing all the knitted samples, silver-coated yarn (SCY) proved to be more suitable for strain sensor as its response to tension was unidirectional with an appreciable range of change in resistance.

Design/methodology/approach

Conductive composite yarns, namely, core spun yarn (CSY1), core spun yarn (CSY2), silver-coated blended yarn (SCBY), staple fiber blended yarn (SFBY) and commingled yarn (CMY) were sourced based on specifications and used to knit strain sensor samples. Electro-mechanical properties were investigated by stretching on a fabric tensile machine to ascertain their suitability for a textile strain sensor.

Findings

In order to generate usable signal for a strain sensor for a conductive yarn, it must have persistent and consistent conductive links, both externally and internally. In the case of composite yarns such as SFBY, SCBY and CMY where there were no consistent alignment and inter-yarn contact, resistance change fluctuated. Among all six different types of yarns used, SCY presented the most suitable result as its response to tension was unidirectional with an appreciable range of change in resistance.

Originality/value

This is an original research carried out by the authors who studied the electro-mechanical properties of some composite conductive yarns that have not been studied before in textile strain sensor research. Detailed research methods, results and interpretation of the results have thus been presented.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 19 March 2020

Xinjin Liu, Xinxin Yan, Xuzhong Su and Juan Song

With the popularization of electronic products, the electromagnetic radiation pollution has been the fourth largest pollution after water, air and noise pollution. Therefore…

Abstract

Purpose

With the popularization of electronic products, the electromagnetic radiation pollution has been the fourth largest pollution after water, air and noise pollution. Therefore, electromagnetic shielding property of textiles is attracting more attention. In this paper, the properties of electromagnetic shielding yarns and fabrics were studied.

Design/methodology/approach

Ten kinds of yarn, stainless steel short fiber and polyester blend yarn with three different blending ratios T/S 90/10, T/S 80/20 and T/S 70/30, stainless steel short fiber, polyester and cotton blend yarn with blending ratio C/T/S 35/35/30, core-spun yarn with one 30 um stainless steel filament C/T28tex/S(30 um), core-spun yarn with two 15 um stainless steel filaments (C/T28tex/S(15 um)/S(15 um)), twin-core-spun yarn with one 30 um stainless steel filament and one 50D spandex filament C/T28tex/S(30 um)/SP(50D), sirofil wrapped yarn with one 30 um stainless steel filament feeding from left S(30 um)+C/T28tex, sirofil wrapped yarn with one 30 um stainless steel filament feeding from right C/T28tex+S(30 um), sirofil wrapped yarn with two 15 um stainless steel filaments feeding from two sides S(15 um)+C/T28tex+ S(15 um), were spun. The qualities of spun yarns were measured. Then, for analyzing the electromagnetic shielding properties of fabrics made of different spun yarns, 20 kinds of fabrics were woven.

Findings

The tested results show that comparing to the T/S 80/20 blend yarn, the resistivity of composite yarns with the same ratio of the stainless steel filament is smaller. The possible reason is that comparing to the stainless steel short fiber, the conductivity of stainless steel filament is better because of the continuous distribution of stainless steel in the filament. Comparing with the core-spun yarn, the conductivity of the sirofil wrapped yarn is a little better. Comparing to the fabric woven by the blend yarn, the electromagnetic shielding of the fabric woven by the composite yarn is better, and comparing to the fabric woven by the core-spun yarn, the electromagnetic shielding of the fabric woven by the sirofil yarn is a little better. The possible reason is that the conduction network can be produced by the stainless steel filament wrapped on the staple fiber yarn surface in the fabric, and the electromagnetic wave can be transmitted in the network.

Originality/value

In this paper, the properties of electromagnetic shielding yarns and fabrics were studied. Ten kinds of yarn, including three stainless steel short fiber and polyester blend yarns, one stainless steel short fiber, polyester and cotton blend yarn, two core-spun yarns, one twin-core-spun yarn, three sirofil wrapped yarn, were spun. Then, for analyzing the electromagnetic shielding properties of fabrics made of different spun yarns, 20 kinds of fabrics were woven. The effects of fabric warp and weft densities, fabric structures, yarn kinds, yarn distributions in the fabric on electromagnetic shielding were analyzed.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 March 2017

Xiuchen Wang, Yaping Li, Ying Su, Zhen Pan and Zhe Liu

The three-dimensional arrangement structure of the conductive fiber is an important factor of the shielding effectiveness of the electromagnetic shielding fabric (EMSF). However…

Abstract

Purpose

The three-dimensional arrangement structure of the conductive fiber is an important factor of the shielding effectiveness of the electromagnetic shielding fabric (EMSF). However, until now, the three-dimensional arrangement structure has not been described because of the complex structure, which leads to many difficulties for the subsequent analysis of the electromagnetic characteristics. Therefore, the purpose of this paper is to propose a feature extraction method to describe the arrangement structure of the conductive fiber based on the three-dimensional calibration and image processing technology, providing a new idea for the above problem.

Design/methodology/approach

First, the three-dimensional positions of the conductive fibers in the EMSF are calibrated using the VHX-600 3D digital microscope and the MATLAB7.5 software. The arrangement characteristics of the conductive fibers are analyzed, and equivalent twist, cross-sectional content, and average angle of a single fiber are proposed to describe the arrangement characteristic of the conductive fiber. Then, a digital description model of the conductive fiber is constructed according to the feature parameters and its three-dimensional structures are reproduced using CATIA. Finally, the reliability of the model is verified by an FDTD example, and the significance and application of the model are given.

Findings

The proposed method can provide the feature extraction and description for the complex spatial three-dimensional arrangement structure of conductive fibers. The feature parameters can reflect different micro arrangement features of the conductive fiber. The proposed idea and method can provide a solid foundation for subsequent studies of the electromagnetic properties of the EMSF.

Originality/value

The study in this paper is of great significance and academic value. This paper provides a new three-dimensional calibration method and constructs multiple feature parameters to describe the complex three-dimensional arrangement structure, providing a new effective method to overcome the problem of the conductive fiber description. The proposed method provides an important basis for the shielding mechanism, transmission characteristics, electromagnetic calculation and product design, and woven technology of the EMSF.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 April 2024

Zhe Liu, Yichen Yang and Xiuchen Wang

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily…

Abstract

Purpose

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily shield electromagnetic waves through reflection, which can lead to the formation of resonance effects that severely compromise their protective capabilities and potentially cause secondary electromagnetic pollution in the external environment.

Design/methodology/approach

In this paper, carbon nanotube fibers are added via spacing method to replace some stainless-steel fibers to impart absorbing properties to stainless-steel EMS fabric. The shielding effectiveness (SE) of the EMS fabrics across various polarization directions is analyzed. Additionally, a spacing arrangement for the carbon nanotube fibers is designed. The EMS fabric with carbon nanotube fibers is manufactured using a semi-automatic sample loom, and its SE is tested using a small window method test box in both vertical and horizontal polarization directions.

Findings

According to the experimental data and electromagnetic theory analysis, it is determined that when the spacing between the carbon nanotube fibers is less than a specific distance, the SE of the stainless-steel EMS fabric significantly improves. The fabric exhibits stable absorbing properties within the tested frequency range, effectively addressing the issue of secondary damage that arises from relying solely on reflective shielding. Conversely, as the spacing between the carbon nanotube fibers exceeds this distance, the SE diminishes. Notably, the SE in the vertical polarization direction is substantially higher than that in the horizontal polarization direction at the same frequency.

Originality/value

This study provides a new path for the development of high-performance EMS fabrics with good wave-absorption characteristics and SE.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 February 2009

V. Koncar, C. Cochrane, M. Lewandowski, F. Boussu and C. Dufour

The need for sensors and actuators is an important issue in the field of smart textiles and garments. Important developments in sensing and heating textile elements consist in…

1079

Abstract

Purpose

The need for sensors and actuators is an important issue in the field of smart textiles and garments. Important developments in sensing and heating textile elements consist in using non‐metallic yarns, for instance carbon containing fibres, directly in the textile fabric. Another solution is to use electro‐conductive materials based on conductive polymer composites (CPCs) containing carbon or metallic particles. The purpose of this paper is to describe research based on the use of a carbon black polymer composite to design two electro‐conductive elements: a strain sensor and a textile heating element.

Design/methodology/approach

The composite is applied as a coating consisting of a solvent, a thermoplastic elastomer, and conductive carbon black nanoparticles. In both applications, the integration of the electrical wires for the voltage supply or signal recording is as discreet as possible.

Findings

The CPC materials constitute a well‐adapted solution for textile structures: they are very flexible, and thus do not modify the mechanical characteristics and general properties of the textile structure.

Research limitations/implications

In the case of the heating element, the use of metallic yarns as electrodes makes the final structure a more rigid. This can be improved by choosing other conducting yarns that are more flexible, or by developing knitted structures instead of woven fabrics.

Practical implications

The CPC provide a low cost solution, and the elements are usually designed so as to work with a low voltage supply.

Originality/value

The CPC has been prepared with a solvent process which is especially adapted to flexible materials like textiles. This is original in comparison to the conventional melt‐mixing process usually found in literature.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 August 2017

Bahadur Goonesh Kumar, Satyadev Rosunee and Mark Bradshaw

In this research project, electrical conductive yarns were knitted together with 100 per cent cotton yarns to create knitted fabrics that would be used as electromagnetic (EM…

Abstract

Purpose

In this research project, electrical conductive yarns were knitted together with 100 per cent cotton yarns to create knitted fabrics that would be used as electromagnetic (EM) shielding materials. The paper aims to discuss these issues.

Design/methodology/approach

1×1 plain fabrics knitted on double-bed hand knitting machines of five and seven gauges. Several strands of the cotton yarns were used together in order to knit samples with good handling properties. The electrical conductive yarn has six plies and each ply has 29 filaments with Naño-coating of silver and having an electrical resistance of 4 Ohms per 100 mm and a count of 96 Tex. The knitted fabrics have similar texture but vary in term of specific weight, fabric density, loop length, Tex, tightness factor, thickness and electrical conductivity. These variations affected the properties of the fabrics, determining factors of a good shielding or not. A special designed Faraday cage was built to measure the EMSE of each knitted fabrics. The EM waves were sent through the signal generator at different frequencies as from 400 to 1,100 MHz and with three different power inputs of 10, 20 and 30 dBm. EMSE measurements were also carried out after the knitted samples were rotated clockwise.

Findings

Good EMSE shielding results were achieved with the knitted samples, however in this study it was found that different knitted fabrics shielded better at specific frequencies and power inputs.

Practical implications

Knitted fabrics can be used to develop comfortable garments that can be used to shield EM waves and protect the wearer.

Originality/value

The choice of using the conductive yarns is exclusive. In addition the EMSE were measured with fabrics knitted in the same structure but on different knitting machine gauge. Three different power inputs were considered and EMSE measurements were taken using frequencies as from 400 to 1,100 MHz. A new method for measuring the electrical resistance on the knitted fabrics and the method used for measuring the EMSE for each knitted fabric were considered.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 November 2008

George K. Stylios

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1248

Abstract

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 53