Search results

1 – 10 of 21
Content available
Article
Publication date: 28 March 2022

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an…

Abstract

Purpose

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an externally imposed uniform magnetic field. Entropy generation and the pressure drop are determined to analyze the performance of the heat transfer. The significance of Joule heating arising due to the applied magnetic field on the heat transfer of the yield stress fluid is described.

Design/methodology/approach

The ventilation in the enclosure of heated walls is created by an opening on one vertical wall through which cold fluid is injected and another opening on the opposite vertical wall through which fluid can flow out.

Findings

This study finds that the inclusion of Fe3O4 nanoparticles with the Al2O3-viscoplastic nanofluid augments the heat transfer. This rate of enhancement in heat transfer is higher than the rate by which the entropy generation is increased as well as the enhancement in the pressure drop. The yield stress has an adverse effect on the heat transfer; however, it favors thermal mixing. The magnetic field, which is acting opposite to the direction of the inlet jet, manifests heat transfer of the viscoplastic hybrid nanofluid. The horizontal jet of cold fluid produces the optimal heat transfer.

Originality/value

The objective of this study is to analyze the impact of the inclined cold jet of viscoplastic electrically conducting hybrid nanofluid on heat transfer from the enclosure in the presence of a uniform magnetic field. The combined effect of hybrid nanoparticles and a magnetic field to enhance heat transfer of a viscoplastic fluid in a ventilated enclosure has not been addressed before.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 3 August 2015

Bozidar Sarler, Nicola Massarotti and P Nithiarasu

245

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 6
Type: Research Article
ISSN: 0961-5539

Open Access
Article
Publication date: 19 March 2021

Dandan Qiu, Lei Luo, Zhiqi Zhao, Songtao Wang, Zhongqi Wang and Bengt Ake Sunden

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement…

1080

Abstract

Purpose

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement conjugated with film cooling in a semicylinder double wall channel.

Design/methodology/approach

Numerical simulations are used in this research. Streamlines on different sections, skin-friction lines, velocity, wall shear stress and turbulent kinetic energy contours near the concave target wall and vortices in the double channel are presented. Local Nusselt number contours and surface averaged Nusselt numbers are also obtained. Topology analysis is applied to further understand the fluid flow and is used in analyzing the heat transfer characteristics.

Findings

It is found that the arrangement of side films positioned far from the center jets helps to enhance the flow disturbance and heat transfer behind the film holes. The heat transfer uniformity for the case of 55° films arrangement angle is most improved and the thermal performance is the highest in this study.

Originality/value

The film holes’ arrangements effects on fluid flow and heat transfer in an impingement cooled concave channel are conducted. The flow structures in the channel and flow characteristics near target by topology pictures are first obtained for the confined film cooled impingement cases. The heat transfer distributions are analyzed with the flow characteristics. The highest heat transfer uniformity and thermal performance situation is obtained in present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 24 October 2022

Babak Lotfi and Bengt Ake Sunden

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice…

1155

Abstract

Purpose

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice structure topology (simple cubic, body-centered cubic, z-reinforced body-centered cubic [BCCZ], face-centered cubic and z-reinforced face-centered cubic [FCCZ] lattice structures) and porosity value ( ) – on the thermal-hydraulic characteristics of the novel trussed fin-and-elliptical tube heat exchanger (FETHX), which has led to a deeper understanding of the superior heat transfer enhancement ability of the PCL structure.

Design/methodology/approach

A three-dimensional computational fluid dynamics (CFD) model is proposed in this paper to provide better understanding of the fluid flow and heat transfer behavior of the PCL structures in the trussed FETHXs associated with different structure topologies and high-porosities. The flow governing equations of the trussed FETHX are solved by the CFD software ANSYS CFX® and use the Menter SST turbulence model to accurately predict flow characteristics in the fluid flow region.

Findings

The thermal-hydraulic performance benchmarks analysis – such as field synergy performance and performance evaluation criteria – conducted during this research successfully identified demonstrates that if the high porosity of all PCL structures decrease to 92%, the best thermal-hydraulic performance is provided. Overall, according to the obtained outcomes, the trussed FETHX with the advantages of using BCCZ lattice structure at 92% porosity presents good thermal-hydraulic performance enhancement among all the investigated PCL structures.

Originality/value

To the best of the authors’ knowledge, this paper is one of the first in the literature that provides thorough thermal-hydraulic characteristics of a novel trussed FETHX with high-porosity PCL structures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 23 September 2021

Jian Liu, Mengyao Xu, Wenxiong Xi, Jiawen Song, Shibin Luo and Bengt Ake Sunden

Endwall film cooling protects vane endwall by coolant coverage, especially at the leading edge (LE) region and vane-pressure side (PS) junction region. Strong flow impingement and…

Abstract

Purpose

Endwall film cooling protects vane endwall by coolant coverage, especially at the leading edge (LE) region and vane-pressure side (PS) junction region. Strong flow impingement and complex vortexaa structures on the vane endwall cause difficulties for coolant flows to cover properly. This work aims at a full-scale arrangement of film cooling holes on the endwall which improves coolant efficiency in the LE region and vane-PS junction region.

Design/methodology/approach

The endwall film holes are grouped in four-holes constructal patterns. Three ways of arranging the groups are studied: based on the pressure field, the streamlines or the heat transfer field. The computational analysis is done with the k-ω SST model after validating the turbulence model properly.

Findings

By clustering the film cooling holes in four-holes patterns, the ejection of the coolant flow is stronger. The four-holes constructal patterns also improve the local coolant coverage in the “tough” regions, such as the junction region of the PS and the endwall. The arrangement based on streamlines distribution can effectively improve the coolant coverage and the arrangement based on the heat transfer distribution (HTD) has benefits by reducing high-temperature regions on the endwall.

Originality/value

A full-scale endwall film cooling design is presented considering interactions of different film cooling holes. A comprehensive model validation and mesh independence study are provided. The cooling holes pattern on the endwall is designed as four-holes constructal patterns combined with several arrangement choices, i.e. by pressure, by heat transfer and by streamline distributions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 13 February 2024

Daniel de Abreu Pereira Uhr, Mikael Jhordan Lacerda Cordeiro and Júlia Gallego Ziero Uhr

This research assesses the economic impact of biomass plant installations on Brazilian municipalities, focusing on (1) labor income, (2) sectoral labor income and (3) income…

Abstract

Purpose

This research assesses the economic impact of biomass plant installations on Brazilian municipalities, focusing on (1) labor income, (2) sectoral labor income and (3) income inequality.

Design/methodology/approach

Municipal data from the Annual Social Information Report, the National Electric Energy Agency and the National Institute of Meteorology spanning 2002 to 2020 are utilized. The Synthetic Difference-in-Differences methodology is employed for empirical analysis, and robustness checks are conducted using the Doubly Robust Difference in Differences and the Double/Debiased Machine Learning methods.

Findings

The findings reveal that biomass plant installations lead to an average annual increase of approximately R$688.00 in formal workers' wages and reduce formal income inequality, with notable benefits observed for workers in the industry and agriculture sectors. The robustness tests support and validate the primary results, highlighting the positive implications of renewable energy integration on economic development in the studied municipalities.

Originality/value

This article represents a groundbreaking contribution to the existing literature as it pioneers the identification of the impact of biomass plant installation on formal employment income and local economic development in Brazil. To the best of our knowledge, this study is the first to uncover such effects. Moreover, the authors comprehensively examine sectoral implications and formal income inequality.

Details

EconomiA, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1517-7580

Keywords

Open Access
Article
Publication date: 11 February 2021

Francesca Giuliani, Anna De Falco, Valerio Cutini and Michele Di Sivo

Worldwide, natural hazards are affecting urban cultural heritage and World Heritage Sites, exacerbating other environmental and human-induced threats deriving from deterioration…

1777

Abstract

Purpose

Worldwide, natural hazards are affecting urban cultural heritage and World Heritage Sites, exacerbating other environmental and human-induced threats deriving from deterioration, uncontrolled urbanization and unsustainable tourism. This paper aims to develop a disaster risk analysis in Italian historic centers because they are complex large-scale systems that are cultural and economic resources for the country, as well as fragile areas.

Design/methodology/approach

A heritage-oriented qualitative methodology for risk assessment is proposed based upon the formalization of risk as a function of hazard, vulnerability and exposure, taking into account the values of cultural heritage assets.

Findings

This work provides a contribution to the body of knowledge in the Italian context of disaster risk mitigation on World Heritage Sites, opening for further research on the monitoring and maintenance of the tangible heritage assets. The application to the site of San Gimignano proves the effectiveness of the methodology for proposing preventive measures and actions that ensure the preservation of cultural values and a safer built environment.

Originality/value

The application of a value-based simplified approach to risk analysis is a novelty for historic centers that are listed as World Heritage Sites.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 12 no. 3
Type: Research Article
ISSN: 1759-5908

Keywords

Content available
Article
Publication date: 18 September 2009

Martin Goosey

53

Abstract

Details

Soldering & Surface Mount Technology, vol. 21 no. 4
Type: Research Article
ISSN: 0954-0911

Content available
Article
Publication date: 20 November 2009

Martin Goosey

63

Abstract

Details

Circuit World, vol. 35 no. 4
Type: Research Article
ISSN: 0305-6120

Content available
Book part
Publication date: 9 February 2004

Abstract

Details

Economic Complexity
Type: Book
ISBN: 978-0-44451-433-2

1 – 10 of 21