Search results

1 – 10 of over 1000
Article
Publication date: 16 November 2020

Azizat Olusola Gbadegesin, Yanxia Sun and Nnamdi I. Nwulu

Storage systems are deemed to be unable to provide revenue commensurate with the resources invested in them, thus discouraging their incorporation within power networks. In…

Abstract

Purpose

Storage systems are deemed to be unable to provide revenue commensurate with the resources invested in them, thus discouraging their incorporation within power networks. In prosumer microgrids, storage systems can provide revenue from reduced grid consumption, energy arbitraging or when serving as back-up power. This study aims to examine stacking these revenue streams with the aim of making storage systems financially viable for inclusion in prosumer microgrids.

Design/methodology/approach

With the aim of reducing self-consumption and maximising revenue, the prosumer microgrid incorporating hybrid energy storage systems (HESS) and solar PV power is solved using the CPLEX solver of the Advanced Interactive Multidimensional Modeling Software (AIMMS). The financial analysis of the results is carried out to provide the payback periods of different system configurations of the prosumer microgrid.

Findings

The findings reveal that the payback period of the three HESS when minimising grid expenses during self-consumption alone and when compared with stacked revenue streams shows an improvement from 4.8–11.2 years to 2.4–6.6 years. With stacked HESS revenues, the supercapacitor-lithium ion battery HESS gave the shortest payback period of 2.31 years when solar PV power is at 75% penetration level.

Originality/value

Existing literature has considered revenue streams of storage systems at the electrical power transmission and distribution levels, but not for prosumer microgrids in particular. This study has captured these benefits and verified the profitability of stacking revenue from HESS to prosumer microgrids, using a case study.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 January 2005

K. Jeevan, G.A. Quadir, K.N. Seetharamu, I.A. Azid and Z.A. Zainal

To determine the optimal dimensions for a stacked micro‐channel using the genetic algorithms (GAs) under different flow constraints.

Abstract

Purpose

To determine the optimal dimensions for a stacked micro‐channel using the genetic algorithms (GAs) under different flow constraints.

Design/methodology/approach

GA is used as an optimization tool for optimizing the thermal resistance of a stacked micro‐channel under different flow constraints obtained by using the one dimensional (1D) and two dimensional (2D) finite element methods (FEM) and by thermal resistance network model as well (proposed by earlier researcher). The 2D FEM is used to study the effect of two dimensional heat conduction in the micro‐channel material. Some parametric studies are carried out to determine the resulting performance of the stacked micro‐channel. Different number of layers of the stacked micro‐channel is also investigated to study its effect on the minimum thermal resistance.

Findings

The results obtained from the 1D FEM analysis compare well with those obtained from the thermal resistance network model. However, the 2D FEM analysis results in lower thermal resistance and, therefore, the importance of considering the conduction in two dimensions in the micro‐channel is highlighted.

Research limitations/implication

The analysis is valid for constant properties fluid and for steady‐state conditions. The top‐most surfaces as well as the side surfaces of the micro‐channel are considered adiabatic.

Practical implications

The method is very useful for practical design of micro‐channel heat‐sinks.

Originality/value

FEM analyses of stacked micro‐channel can be easily implemented in the optimization procedure for obtaining the dimensions of the stacked micro‐channel heat‐sinks for minimum thermal resistance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 May 2021

Kotaru Kiran and Rajeswara Rao D.

Vertical handover has been grown rapidly due to the mobility model improvements. These improvements are limited to certain circumstances and do not provide the support in the…

Abstract

Purpose

Vertical handover has been grown rapidly due to the mobility model improvements. These improvements are limited to certain circumstances and do not provide the support in the generic mobility, but offering vertical handover management in HetNets is very crucial and challenging. Therefore, this paper presents a vertical handoff management method using the effective network identification method.

Design/methodology/approach

This paper presents a vertical handoff management method using the effective network identification method. The handover triggering schemes are initially modeled to find the suitable position for starting handover using computed coverage area of the WLAN access point or cellular base station. Consequently, inappropriate networks are removed to determine the optimal network for performing the handover process. Accordingly, the network identification approach is introduced based on an adaptive particle-based Sailfish optimizer (APBSO). The APBSO is newly designed by incorporating self-adaptive particle swarm optimization (APSO) in Sailfish optimizer (SFO) and hence, modifying the update rule of the APBSO algorithm based on the location of the solutions in the past iterations. Also, the proposed APBSO is utilized for training deep-stacked autoencoder to choose the optimal weights. Several parameters, like end to end (E2E) delay, jitter, signal-to-interference-plus-noise ratio (SINR), packet loss, handover probability (HOP) are considered to find the best network.

Findings

The developed APBSO-based deep stacked autoencoder outperformed than other methods with a minimal delay of 11.37 ms, minimal HOP of 0.312, maximal stay time of 7.793 s and maximal throughput of 12.726 Mbps, respectively.

Originality/value

The network identification approach is introduced based on an APBSO. The APBSO is newly designed by incorporating self-APSO in SFO and hence, modifying the update rule of the APBSO algorithm based on the location of the solutions in the past iterations. Also, the proposed APBSO is used for training deep-stacked autoencoder to choose the optimal weights. Several parameters, like E2E delay, jitter, SINR, packet loss and HOP are considered to find the best network. The developed APBSO-based deep stacked autoencoder outperformed than other methods with minimal delay minimal HOP, maximal stay time and maximal throughput.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 14 August 2021

Maisnam Niranjan Singh and Samitha Khaiyum

The aim of continuous learning is to obtain and fine-tune information gradually without removing the already existing information. Many conventional approaches in streaming data…

Abstract

Purpose

The aim of continuous learning is to obtain and fine-tune information gradually without removing the already existing information. Many conventional approaches in streaming data classification assume that all arrived new data is completely labeled. To regularize Neural Networks (NNs) by merging side information like user-provided labels or pair-wise constraints, incremental semi-supervised learning models need to be introduced. However, they are hard to implement, specifically in non-stationary environments because of the efficiency and sensitivity of such algorithms to parameters. The periodic update and maintenance of the decision method is the significant challenge in incremental algorithms whenever the new data arrives.

Design/methodology/approach

Hence, this paper plans to develop the meta-learning model for handling continuous or streaming data. Initially, the data pertain to continuous behavior is gathered from diverse benchmark source. Further, the classification of the data is performed by the Recurrent Neural Network (RNN), in which testing weight is adjusted or optimized by the new meta-heuristic algorithm. Here, the weight is updated for reducing the error difference between the target and the measured data when new data is given for testing. The optimized weight updated testing is performed by evaluating the concept-drift and classification accuracy. The new continuous learning by RNN is accomplished by the improved Opposition-based Novel Updating Spotted Hyena Optimization (ONU-SHO). Finally, the experiments with different datasets show that the proposed learning is improved over the conventional models.

Findings

From the analysis, the accuracy of the ONU-SHO based RNN (ONU-SHO-RNN) was 10.1% advanced than Decision Tree (DT), 7.6% advanced than Naive Bayes (NB), 7.4% advanced than k-nearest neighbors (KNN), 2.5% advanced than Support Vector Machine (SVM) 9.3% advanced than NN, and 10.6% advanced than RNN. Hence, it is confirmed that the ONU-SHO algorithm is performing well for acquiring the best data stream classification.

Originality/value

This paper introduces a novel meta-learning model using Opposition-based Novel Updating Spotted Hyena Optimization (ONU-SHO)-based Recurrent Neural Network (RNN) for handling continuous or streaming data. This is the first work utilizes a novel meta-learning model using Opposition-based Novel Updating Spotted Hyena Optimization (ONU-SHO)-based Recurrent Neural Network (RNN) for handling continuous or streaming data.

Article
Publication date: 21 November 2018

Basel Bani-Ismail and Youcef Baghdadi

A mature adoption of a service-oriented architecture (SOA) goes steadily through different levels of maturity, whereby each level has its own types of services (e.g. software…

Abstract

Purpose

A mature adoption of a service-oriented architecture (SOA) goes steadily through different levels of maturity, whereby each level has its own types of services (e.g. software services or business services). However, the identification of such services is not an easy task even though there exist many service identification methods (SIMs). This paper aims to propose a new approach to select SIMs. The proposed selection approach for SIMs uses the desired SOA maturity level as the main guidance to assist the organizations in selecting a suitable SIM for each level of SOA maturity.

Design/methodology/approach

The methodology consists of three activities: surveying and selecting a suitable evaluation framework for SIMs, surveying and selecting a suitable SOA maturity model (SOAMM) and using the selected evaluation framework to decide a suitable SIM for the desired SOA maturity level with respect to the selected SOAMM.

Findings

Welke’s SOAMM and two existing evaluation frameworks for SIMs were found suitable to validate the proposed selection approach for SIMs. The two selected frameworks utilized the proposed selection approach to different degrees. To fully utilize the proposed selection approach, a comprehensive evaluation framework is required that addresses the most significant aspects of the existing SIMs.

Originality/value

In this research, the authors propose a new way of using Welke’s SOAMM to guide the organizations in selecting a suitable SIM from the existing evaluation frameworks for SIMs based on the desired SOA maturity level. In addition, the proposed selection approach improves the applicability of the existing evaluation frameworks, as it provides the organizations with a new way to select the methods.

Details

International Journal of Web Information Systems, vol. 15 no. 3
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 3 November 2020

Femi Emmanuel Ayo, Olusegun Folorunso, Friday Thomas Ibharalu and Idowu Ademola Osinuga

Hate speech is an expression of intense hatred. Twitter has become a popular analytical tool for the prediction and monitoring of abusive behaviors. Hate speech detection with…

Abstract

Purpose

Hate speech is an expression of intense hatred. Twitter has become a popular analytical tool for the prediction and monitoring of abusive behaviors. Hate speech detection with social media data has witnessed special research attention in recent studies, hence, the need to design a generic metadata architecture and efficient feature extraction technique to enhance hate speech detection.

Design/methodology/approach

This study proposes a hybrid embeddings enhanced with a topic inference method and an improved cuckoo search neural network for hate speech detection in Twitter data. The proposed method uses a hybrid embeddings technique that includes Term Frequency-Inverse Document Frequency (TF-IDF) for word-level feature extraction and Long Short Term Memory (LSTM) which is a variant of recurrent neural networks architecture for sentence-level feature extraction. The extracted features from the hybrid embeddings then serve as input into the improved cuckoo search neural network for the prediction of a tweet as hate speech, offensive language or neither.

Findings

The proposed method showed better results when tested on the collected Twitter datasets compared to other related methods. In order to validate the performances of the proposed method, t-test and post hoc multiple comparisons were used to compare the significance and means of the proposed method with other related methods for hate speech detection. Furthermore, Paired Sample t-Test was also conducted to validate the performances of the proposed method with other related methods.

Research limitations/implications

Finally, the evaluation results showed that the proposed method outperforms other related methods with mean F1-score of 91.3.

Originality/value

The main novelty of this study is the use of an automatic topic spotting measure based on naïve Bayes model to improve features representation.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 19 June 2009

Imam Machdi, Toshiyuki Amagasa and Hiroyuki Kitagawa

The purpose of this paper is to propose Extensible Markup Language (XML) data partitioning schemes that can cope with static and dynamic allocation for parallel holistic twig…

Abstract

Purpose

The purpose of this paper is to propose Extensible Markup Language (XML) data partitioning schemes that can cope with static and dynamic allocation for parallel holistic twig joins: grid metadata model for XML (GMX) and streams‐based partitioning method for XML (SPX).

Design/methodology/approach

GMX exploits the relationships between XML documents and query patterns to perform workload‐aware partitioning of XML data. Specifically, the paper constructs a two‐dimensional model with a document dimension and a query dimension in which each object in a dimension is composed from XML metadata related to the dimension. GMX provides a set of XML data partitioning methods that include document clustering, query clustering, document‐based refinement, query‐based refinement, and query‐path refinement, thereby enabling XML data partitioning based on the static information of XML metadata. In contrast, SPX explores the structural relationships of query elements and a range‐containment property of XML streams to generate partitions and allocate them to cluster nodes on‐the‐fly.

Findings

GMX provides several salient features: a set of partition granularities that balance workloads of query processing costs among cluster nodes statically; inter‐query parallelism as well as intra‐query parallelism at multiple extents; and better parallel query performance when all estimated queries are executed simultaneously to meet their probability of query occurrences in the system. SPX also offers the following features: minimal computation time to generate partitions; balancing skewed workloads dynamically on the system; producing higher intra‐query parallelism; and gaining better parallel query performance.

Research limitations/implications

The current status of the proposed XML data partitioning schemes does not take into account XML data updates, e.g. new XML documents and query pattern changes submitted by users on the system.

Practical implications

Note that effectiveness of the XML data partitioning schemes mainly relies on the accuracy of the cost model to estimate query processing costs. The cost model must be adjusted to reflect characteristics of a system platform used in the implementation.

Originality/value

This paper proposes novel schemes of conducting XML data partitioning to achieve both static and dynamic workload balance.

Details

International Journal of Web Information Systems, vol. 5 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 17 August 2015

Savong Bou, Toshiyuki Amagasa and Hiroyuki Kitagawa

In purpose of this paper is to propose a novel scheme to process XPath-based keyword search over Extensible Markup Language (XML) streams, where one can specify query keywords and…

114

Abstract

Purpose

In purpose of this paper is to propose a novel scheme to process XPath-based keyword search over Extensible Markup Language (XML) streams, where one can specify query keywords and XPath-based filtering conditions at the same time. Experimental results prove that our proposed scheme can efficiently and practically process XPath-based keyword search over XML streams.

Design/methodology/approach

To allow XPath-based keyword search over XML streams, it was attempted to integrate YFilter (Diao et al., 2003) with CKStream (Hummel et al., 2011). More precisely, the nondeterministic finite automation (NFA) of YFilter is extended so that keyword matching at text nodes is supported. Next, the stack data structure is modified by integrating set of NFA states in YFilter with bitmaps generated from set of keyword queries in CKStream.

Findings

Extensive experiments were conducted using both synthetic and real data set to show the effectiveness of the proposed method. The experimental results showed that the accuracy of the proposed method was better than the baseline method (CKStream), while it consumed less memory. Moreover, the proposed scheme showed good scalability with respect to the number of queries.

Originality/value

Due to the rapid diffusion of XML streams, the demand for querying such information is also growing. In such a situation, the ability to query by combining XPath and keyword search is important, because it is easy to use, but powerful means to query XML streams. However, none of existing works has addressed this issue. This work is to cope with this problem by combining an existing XPath-based YFilter and a keyword-search-based CKStream for XML streams to enable XPath-based keyword search.

Details

International Journal of Web Information Systems, vol. 11 no. 3
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 4 November 2019

Shuqiang Wang, Jia Tang, Yiquan Zou and Qihui Zhou

The purpose of this paper is to investigate the process optimization of a precast concrete component production line by using value stream mapping.

1635

Abstract

Purpose

The purpose of this paper is to investigate the process optimization of a precast concrete component production line by using value stream mapping.

Design/methodology/approach

This paper is an empirical focused on of lean production theory and value stream mapping. The data in the case study were collected in real time on-site for each process during the production process of a prefabricated exterior wall.

Findings

The results of the current value stream map indicate that the main problems of the current production process are related to equipment, technology and organization. The equipment problems include simple demolding and cleaning tools and the lack of professional transfer channels. The technology problems include the lack of a marking mechanism and pipeline exit mechanism. There is a lack of standard operating procedures and incomplete process convergence. A comparison and analysis of the current value stream and the future value flow indicate that optimizations of the process flow, the production line layout, and the standard operating procedures have shortened the delivery cycle, reduced the number of workers, improved the operator’s operating level and balanced the production line.

Practical implications

The results of this study provide practitioners with a clear understanding of the optimization of the precast concrete component production and represent a method and basis for the process optimization of a factory production line; the approach is suitable for process optimization in other areas.

Originality/value

This research represents an innovative application of lean production theory and value stream mapping in a complex production line of precast concrete components and thereby fills the gap between the theory and practice of the optimization of a precast concrete component production line.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 January 2005

Pradeep Hegde, K.N. Seetharamu, G.A. Quadir, P.A. Aswathanarayana, M.Z. Abdullah and Z.A. Zainal

To analyze two‐phase flow in micro‐channel heat exchangers used for high flux micro‐electronics cooling and to obtain performance parameters such as thermal resistance, pressure…

1234

Abstract

Purpose

To analyze two‐phase flow in micro‐channel heat exchangers used for high flux micro‐electronics cooling and to obtain performance parameters such as thermal resistance, pressure drop, etc. Both uniform and non‐uniform micro‐channel base heat fluxes are considered.

Design/methodology/approach

Energy balance equations are developed for two‐phase flow in micro‐channels and are solved using the finite element method (FEM). A unique ten noded element is used for the channel descritization. The formulation also automatically takes care of single‐phase flow in the micro‐channel.

Findings

Micro‐channel wall temperature distribution, thermal resistance and the pressure drop for various uniform micro‐channel base heat fluxes are obtained, both for single‐ and two‐phase flows in the micro‐channel. Results are compared against data available in the literature. The wall temperature distribution for a particular case of non‐uniform base heat flux is also obtained.

Research limitations/implications

The analysis is done for a single micro‐channel and the effects of multiple or stacked channels are not considered. The analysis needs to be carried out for higher heat fluxes and the validity of the correlation needs to be ascertained through experimentation. Effects of flow mal‐distribution in multiple channels, etc. need to be considered.

Practical implications

The role of two‐phase flow in micro‐channels for high flux micro‐electronics cooling in reducing the thermal resistance is demonstrated. The formulation is very useful for the thermal design and management of microchannels with both single‐ and two‐phase flows for either uniform or non‐uniform base heat flux.

Originality/value

A simple approach to accurately determine the thermal resistance in micro‐channels with two‐phase flow, for both uniform and non‐uniform base heat fluxes is the originality of the paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000