Search results

1 – 10 of over 7000
Article
Publication date: 19 July 2019

Peng Zhu, Shuang Liang, Yudan Yang, Xicheng Wei and Wurong Wang

This paper aims to investigate the correlation between wear behavior and microstructure evolution in friction-induced deformation layers (FDL) of 30CrMnSi steel, especially the…

Abstract

Purpose

This paper aims to investigate the correlation between wear behavior and microstructure evolution in friction-induced deformation layers (FDL) of 30CrMnSi steel, especially the role of strain-hardening induced by plastic deformation in FDL, which accordingly alters the wear behavior.

Design/methodology/approach

Dry sliding friction and wear behaviors of the 30CrMnSi steel against quenched and tempered GCr15 steel were studied using a pin-on-disc tester. The microstructure, hardness and plastic deformation of FDL were investigated.

Findings

It was found that the evolution of microstructure and strain-hardening induced by plastic deformation were occurred in the subsurface. When the microstructure, hardness and depth of the plastic deformation layer (PDL) reached a relatively steady state, the friction process transformed into stable-state stage. The wear loss and depth of the PDL was in dynamic equilibrium at stable wear stage.

Originality/value

In this paper, the correlation among the microstructure evolution, the strain-hardening and wear behavior were systemically analyzed. This paper could provide a theoretical reference for optimizing the microstructure and strain hardening properties of tribo-pairs materials.

Details

Industrial Lubrication and Tribology, vol. 71 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 August 2022

Hangjia Dong, Tuanjie Li, Zuowei Wang and Yuming Ning

The inchworm actuator is widely applied in space industry. One of the major issues in space instrumentation is the reliability, especially under space thermal load. The purpose of…

Abstract

Purpose

The inchworm actuator is widely applied in space industry. One of the major issues in space instrumentation is the reliability, especially under space thermal load. The purpose of this paper is to present a numerical calculation method for the inchworm actuator reliability with considering the effect of space temperature.

Design/methodology/approach

First, the structure of designed inchworm actuator is introduced, and the main failure reason is analyzed. Then the wear model is proposed with considering the space temperature, and an experiment device is designed to verify the wear model. Finally, the reliability calculation method is developed based on the working principle of the inchworm actuator.

Findings

The numerical calculation method can be applied to calculate the reliability of the inchworm actuator with considering the space temperature. And the results provide a new perspective to discuss the influences of the temperature and driving voltage on the reliability of inchworm actuators.

Originality/value

This work presents a reliability calculation method of inchworm actuators with considering the space temperature.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 October 2022

Xianchen Yang, Xinmei Li and Songchen Wang

Conventional wear models cannot satisfy the requirements of electrical contact wear simulation. Therefore, this study aims to establish a novel wear simulation model that…

Abstract

Purpose

Conventional wear models cannot satisfy the requirements of electrical contact wear simulation. Therefore, this study aims to establish a novel wear simulation model that considered the influence of thermal-stress-wear interaction to achieve high accuracy under various current conditions, especially high current.

Design/methodology/approach

The proposed electrical contact wear model was established by combining oxidation theory and the modified Archard wear model. The wear subroutine was written in FORTRAN, and adaptive mesh technology was used to update the wear depth. The simulation results were compared with the experimental results and the typically used stress-wear model. The temperature of the contact surface, distribution of the wear depth and evolution of the wear rate were analyzed.

Findings

With the increase in the current flow, the linear relationship between the wear depth and time changed to the parabola. Electrical contact wear occurred in two stages, namely, acceleration and stability stages. In the acceleration stage, the wear rate increased continuously because of the influence of material hardness reduction and oxidation loss.

Originality/value

In previous wear simulation models, the influence of multiple physical fields in friction and wear has been typically ignored. In this study, the oxidation loss during electrical contact wear was considered, and the thermo-stress-wear complete coupling method was used to analyze the wear process.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 August 2021

Haijie Yu, Haijun Wei, Daping Zhou, Jingming Li and Hong Liu

This study aims to reconstruct the frictional vibration signal from noise and characterize the running-in process by frictional vibration.

Abstract

Purpose

This study aims to reconstruct the frictional vibration signal from noise and characterize the running-in process by frictional vibration.

Design/methodology/approach

There is a strong correlation between tangential frictional vibration and normal frictional vibration. On this basis, a new frictional vibration reconstruction method combining cross-correlation analysis with ensemble empirical mode decomposition (EEMD) was proposed. Moreover, the concept of information entropy of friction vibration is introduced to characterize the running-in process.

Findings

Compared with the wavelet packet method, the tangential friction vibration and the normal friction vibration reconstructed by the method presented in this paper have a stronger correlation. More importantly, during the running-in process, the information entropy of friction vibration gradually decreases until the equilibrium point is reached, which is the same as the changing trend of friction coefficient, indicating that the information entropy of friction vibration can be used to characterize the running-in process.

Practical implications

The study reveals that the application EEMD method is an appropriate approach to reconstruct frictional vibration and the information entropy of friction vibration represents the running-in process. Based on these results, a condition monitoring system can be established to automatically evaluate the running-in state of mechanical parts.

Originality/value

The EEMD method was applied to reconstruct the frictional vibration. Furthermore, the information entropy of friction vibration was used to analysis the running-in process.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 January 2021

Mingyu Zhang, Jing Wang, Peiran Yang, Yi Liu, Zhaohua Shang and Longjie Dai

This study aims to investigate the influence of geometry of bush-pin pair from a perspective of optimal lubrication through a thermal elastohydrodynamic lubrication model for…

Abstract

Purpose

This study aims to investigate the influence of geometry of bush-pin pair from a perspective of optimal lubrication through a thermal elastohydrodynamic lubrication model for finite line contact.

Design/methodology/approach

A constitutive equation: Ree-Eyring fluid is used in the calculations. The real chain sizes, i.e. equivalent radius of curvature, bush length, length of the rounded corner area and rounded corner radius, are jointed investigated. Moreover, the effects of the length of the rounded corner area and the radius of rounded corner are investigated.

Findings

It is found that the current standard of the chain might not consider the importance of lubrication, and the lubrication state can be improved effectively by choosing an optimal radius of rounded corner and the length of the corner area.

Originality/value

By optimally selecting sizes, the occurrence of high pressure, high temperature rise and near zero film thickness at the ends of bush, especially under heavier load, can be effectively avoided.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0031/

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 December 2019

Cong Ding, Zhen-Yu Zhou, Zhi-Peng Yuan, Hua Zhu and Zhong-Yu Piao

The purpose of this paper is to study the correlation between the dynamic features of the running-in attractor and the wear particle group, so as to characterize the running-in…

Abstract

Purpose

The purpose of this paper is to study the correlation between the dynamic features of the running-in attractor and the wear particle group, so as to characterize the running-in attractor by means of the wear particle group.

Design/methodology/approach

Wear particles are collected in phased wear experiments, and their dynamic features are investigated by the equivalent mean chord length L. Then, the correlation between the equivalent mean chord length L and the correlation dimension D of the running-in attractor is studied.

Findings

In the wear process, the equivalent means chord length L first decreases, then remains steady, and finally increases, this process agrees with the increase, stabilization and decrease of the correlation dimension D. Therefore, the wear particle group has a dynamic nature, which characterizes the formation, stabilization, and disappearance of a running-in attractor. Consequently, the dynamic characteristics and evolution of a running-in attractor can be revealed by the wear particle group.

Originality/value

The intrinsic relationship between the wear particle group and the running-in attractor is proved, and this is advantageous for further revealing the dynamic features of the running-in attractor and identifying the wear states.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 September 2015

Juozas Padgurskas, Raimundas Rukuiža, Arturas Kupcinskas and Raimondas Kreivaitis

The purpose of this paper is to conduct research on the possibility of improving the tribological and utilization properties of lard and rapeseed oil bio-based greases by mixing…

Abstract

Purpose

The purpose of this paper is to conduct research on the possibility of improving the tribological and utilization properties of lard and rapeseed oil bio-based greases by mixing it with ethanol and selection of thickener and modification with special biological additives.

Design/methodology/approach

Rapeseed oil- and lard-based greases with sodium and lithium soap thickeners were mixed with either water or ethanol and modified with a special biological anti-wear additive. Tribological properties of modified lubricants evaluated on a four-ball machine.

Findings

Rapeseed oil- and lard-based greases suspended in ethanol and modified with bio-additive have the same wear resistance as the industrial non-biological lubrication grease and much higher wear resistance as bio-based reference grease. The tribological efficiency of the additives is higher in greases of rapeseed oil and less efficient in lard-based greases. Oxidation and wear tests show that investigated bio-based greases have comparatively stable tribological properties also after their aging. Modified greases have sufficient consistence according penetration measurements and high thermal resistance according drop-point temperature measurements. All produced experimental greases pass within the category of the easily degradable materials.

Originality/value

The greases mixed with the ethanol make possible to form more homogeneous and stable grease mixture. Modified bio-based greases have significantly higher wear resistance as bio-based reference grease, their lubrication properties are stable also after the aging and are categorized as easily degradable materials.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 March 2024

Cong Ding, Zhizhao Qiao and Zhongyu Piao

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Abstract

Purpose

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Design/methodology/approach

The hydrodynamic pressure lubrication models of the nontextured, V-shaped, circular and square microtextures are established. The corresponding oil film pressure distributions are explored. The friction and wear experiments are conducted on a rotating device. The effects of the microstructure shapes and sizes on the wear mechanisms are investigated via the friction coefficients and surface morphologies.

Findings

In comparison, the V-shaped microtexture has the largest oil film carrying capacity and the lowest friction coefficient. The wear mechanism of the V-shaped microtexture is dominated by abrasive and adhesive wear. The V-shaped microtexture has excellent wear resistance under a side length of 300 µm, an interval of 300 µm and a depth of 20 µm.

Originality/value

This study is conductive to the design of wear-resistant surfaces for friction components.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 December 2019

Ke Li, Xiuping Dong, Mingji Huang and Ping Chen

This paper aims to improve the wear resistance of metal rubber microfilaments and the service life. The effect of surface texture by laser processing on the fretting friction…

Abstract

Purpose

This paper aims to improve the wear resistance of metal rubber microfilaments and the service life. The effect of surface texture by laser processing on the fretting friction properties of metal rubber microfilaments was studied.

Design/methodology/approach

The LQL-F20A laser marking machine was used to fabricate a ring groove array with equal spacing and dense arrangement on the surface of metal rubber microfilaments. The test was carried out with a self-made micro-dynamic frictional tester. The topography of the microfilaments was observed by scanning electron microscopy and analyzed.

Findings

It has shown that laser surface texturing can improve the wear performance of microfilaments. Under the same experimental conditions, the microfilaments of textured surface has a smaller depth of wear than un-textured specimen. The wear resistance increases with the increase of texture density. The friction coefficient of textured specimen is significantly reduced compared with un-textured specimen, and the surface texture density of microfilaments has little influence on the friction coefficient after stabilization. In the stage of stable fretting wear, the wear depth will be more with the increase of the load.

Originality/value

There is little research on metal rubber microfilaments tribological properties. In this paper, the effect of laser texturing of microfilaments on micro-dynamic friction properties was studied by friction machine to provide a reference for the application of metal rubber in aerospace, medical and other fields.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 September 2021

Yabao Hu, Hanning Chen, Xiaodan Liang and Jianbo Lei

Studies on titanium implants have shown that the mechanical properties of the parts are affected by the microstructure characteristic derived from the manufacturing process. The…

Abstract

Purpose

Studies on titanium implants have shown that the mechanical properties of the parts are affected by the microstructure characteristic derived from the manufacturing process. The properties of different orientations of specimens under the same process parameters will be different, which should be considered in the application of bone implants. This paper aims to understand the influence of microstructure on micro-hardness, wear and corrosion resistance in different orientations.

Design/methodology/approach

The authors manufactured titanium parts and carried out micro-hardness, wear tests and electrochemical corrosion of different orientations under the same process conditions. Then, finally studied the evolution mechanism of the microstructure in different orientations and its influence mechanism on wear and corrosion mechanism.

Findings

The melting method makes the grains on the surface in XY orientation finer. The wear mechanism of XY orientation is abrasive wear, that of XZ and YZ orientations are adhesive wear. During corrosion, XY orientation forms a stable passivation film earlier. Compared with XZ and YZ orientations, XY orientation has higher micro-hardness, better wear and corrosion resistance.

Originality/value

In this paper, the microstructure, wear and corrosion resistance of selective laser melted parts were discussed and the differences in different orientations under the same experimental conditions were discussed. The evolution mechanism of the microstructure in different orientations and its influence mechanism on wear mechanism and corrosion mechanism was studied. The mechanical anisotropy of selective laser melted components was discussed.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 7000