Search results

1 – 10 of 870
Article
Publication date: 2 October 2018

Víctor H. Andaluz, Cristian M. Gallardo, Fernando A. Chicaiza, Christian P. Carvajal, José Morales, Giovanny Cuzco, Vicente Morales, Byron E. Vaca and Nicolay Samaniego

This paper aims to present a unified motion control scheme for quadcopters which not only solves the point stabilization and trajectory tracking problems but also the path…

Abstract

Purpose

This paper aims to present a unified motion control scheme for quadcopters which not only solves the point stabilization and trajectory tracking problems but also the path following problem.

Design/methodology/approach

The control problem is solved based on the kinematic model of the unmanned aerial vehicles (UAV). Next, a dynamic compensation controller is considered through of a quadcopter-inner-loop system to independently track four velocity commands: forward, lateral, up/downward and heading rate. Stability and robustness of the whole control system are proved through the Lyapunov’s method. To evaluate the controller’s performance, a multi-user application which allows bilateral communication between a ground station and the Phantom 3 PRO quadrotor is developed.

Findings

The performance of the proposed unified controller is shown through real experiments for the different motion control objectives: point stabilization, trajectory tracking and path following. The experiments confirm the capability of the unified controller to solve different motion problems by an adequate selection of the control references.

Originality/value

This work proposes the design of three types of motion controllers, which can be switched to comply a task in outdoor. Based on the software development kit provided by the company DJI, an application to get and send data to the UAV is developed. By means of this application, the three tasks are tested and the robustness of the controllers is proved.

Details

Assembly Automation, vol. 38 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 25 May 2010

Moshe Sniedovich

The purpose of this paper is to clarify a number of important facts about info‐gap decision theory.

2487

Abstract

Purpose

The purpose of this paper is to clarify a number of important facts about info‐gap decision theory.

Design/methodology/approach

Theorems are put forward to rebut claims made about info‐gap decision theory in papers published in this journal and elsewhere.

Findings

Info‐gap's robustness model is a simple instance of the most famous model in classical decision theory for the treatment of decision problems subject to severe uncertainty, namely Wald's maximin model. This simple instance is the equivalent of the well‐established model known universally as radius of stability. Info‐gap's robustness model has an inherent local orientation. Therefore, it is in principle unable to address the fundamental difficulties presented by the type of severe uncertainty that is postulated by info‐gap decision theory.

Practical implications

These findings caution against accepting the assertions made in the info‐gap literature about: info‐gap decision theory's role and place in decision making under severe uncertainty; and its ability to model, analyze, and manage severe uncertainty.

Originality/value

This paper exposes the serious difficulties with claims made in papers published in this journal and elsewhere regarding the place and role of info‐gap decision theory in decision theory and its ability to handle severe uncertainty.

Details

The Journal of Risk Finance, vol. 11 no. 3
Type: Research Article
ISSN: 1526-5943

Keywords

Article
Publication date: 25 July 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Bilal Sari and Jorge Pomares

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated…

Abstract

Purpose

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated dynamic model is characterized by underactuation. Because of the existence of more control inputs, in tilt-rotor UAVs, there is more flexibility in the solution of the associated nonlinear control problem. On the other side, the dynamic model of the tilt-rotor UAVs remains nonlinear and multivariable and this imposes difficulty in the drone's controller design. This paper aims to achieve simultaneously precise tracking of trajectories and minimization of energy dissipation by the UAV's rotors. To this end elaborated control methods have to be developed.

Design/methodology/approach

A solution of the nonlinear control problem of tilt-rotor UAVs is attempted using a novel nonlinear optimal control method. This method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At the first stage, approximate linearization is performed on the dynamic model of the tilt-rotor UAV with the use of first-order Taylor series expansion and through the computation of the system's Jacobian matrices. This linearization process is carried out at each sampling instance, around a temporary operating point which is defined by the present value of the tilt-rotor UAV's state vector and by the last sampled value of the control inputs vector. At the second stage, an H-infinity stabilizing controller is designed for the approximately linearized model of the tilt-rotor UAV. To find the feedback gains of the controller, an algebraic Riccati equation is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability properties of the control scheme. Moreover, the H-infinity Kalman filter is used as a robust observer so as to enable state estimation-based control. The paper's nonlinear optimal control approach achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs. Finally, the nonlinear optimal control approach for UAVs with tilting rotors is compared against flatness-based control in successive loops, with the latter method to be also exhibiting satisfactory performance.

Findings

So far, nonlinear model predictive control (NMPC) methods have been of questionable performance in treating the nonlinear optimal control problem for tilt-rotor UAVs because NMPC's convergence to optimum depends often on the empirical selection of parameters while also lacking a global stability proof. In the present paper, a novel nonlinear optimal control method is proposed for solving the nonlinear optimal control problem of tilt rotor UAVs. Firstly, by following the assumption of small tilting angles, the state-space model of the UAV is formulated and conditions of differential flatness are given about it. Next, to implement the nonlinear optimal control method, the dynamic model of the tilt-rotor UAV undergoes approximate linearization at each sampling instance around a temporary operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. The linearization process is based on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms from the Taylor series, is considered to be a perturbation that is asymptotically compensated by the robustness of the control scheme. For the linearized model of the UAV, an H-infinity stabilizing feedback controller is designed. To select the feedback gains of the H-infinity controller, an algebraic Riccati equation has to be repetitively solved at each time-step of the control method. The stability properties of the control scheme are analysed with the Lyapunov method.

Research limitations/implications

There are no research limitations in the nonlinear optimal control method for tilt-rotor UAVs. The proposed nonlinear optimal control method achieves fast and accurate tracking of setpoints by all state variables of the tilt-rotor UAV under moderate variations of the control inputs. Compared to past approaches for treating the nonlinear optimal (H-infinity) control problem, the paper's approach is applicable also to dynamical systems which have a non-constant control inputs gain matrix. Furthermore, it uses a new Riccati equation to compute the controller's gains and follows a novel Lyapunov analysis to prove global stability for the control loop.

Practical implications

There are no practical implications in the application of the nonlinear optimal control method for tilt-rotor UAVs. On the contrary, the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed to the linear parameter varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. The stability properties of the Galerkin series expansion-based optimal control approaches are still unproven.

Social implications

The proposed nonlinear optimal control method is suitable for using in various types of robots, including robotic manipulators and autonomous vehicles. By treating nonlinear control problems for complicated robotic systems, the proposed nonlinear optimal control method can have a positive impact towards economic development. So far the method has been used successfully in (1) industrial robotics: robotic manipulators and networked robotic systems. One can note applications to fully actuated robotic manipulators, redundant manipulators, underactuated manipulators, cranes and load handling systems, time-delayed robotic systems, closed kinematic chain manipulators, flexible-link manipulators and micromanipulators and (2) transportation systems: autonomous vehicles and mobile robots. Besides, one can note applications to two-wheel and unicycle-type vehicles, four-wheel drive vehicles, four-wheel steering vehicles, articulated vehicles, truck and trailer systems, unmanned aerial vehicles, unmanned surface vessels, autonomous underwater vessels and underactuated vessels.

Originality/value

The proposed nonlinear optimal control method is a novel and genuine result and is used for the first time in the dynamic model of tilt-rotor UAVs. The nonlinear optimal control approach exhibits advantages against other control schemes one could have considered for the tilt-rotor UAV dynamics. For instance, (1) compared to the global linearization-based control schemes (such as Lie algebra-based control or flatness-based control), it does not require complicated changes of state variables (diffeomorphisms) and transformation of the system's state-space description. Consequently, it also avoids inverse transformations which may come against singularity problems, (2) compared to NMPC, the proposed nonlinear optimal control method is of proven global stability and the convergence of its iterative search for an optimum does not depend on initialization and controller's parametrization, (3) compared to sliding-mode control and backstepping control the application of the nonlinear optimal control method is not constrained into dynamical systems of a specific state-space form. It is known that unless the controlled system is found in the input–output linearized form, the definition of the associated sliding surfaces is an empirical procedure. Besides, unless the controlled system is found in the backstepping integral (triangular) form, the application of backstepping control is not possible, (4) compared to PID control, the nonlinear optimal control method is of proven global stability and its performance is not dependent on heuristics-based selection of parameters of the controller and (5) compared to multiple-model-based optimal control, the nonlinear optimal control method requires the computation of only one linearization point and the solution of only one Riccati equation.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 6 June 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Fabrizio Marignetti and Pierluigi Siano

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as…

Abstract

Purpose

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as in the traction of transportation systems (such as electric vehicles and electric trains or ships with electric propulsion). The dynamic model of VSI-PMSMs is multivariable and exhibits complicated nonlinear dynamics. The inverters’ currents, which are generated through a pulsewidth modulation process, are used to control the stator currents of the PMSM, which in turn control the rotational speed of this electric machine. So far, several nonlinear control schemes for VSI-PMSMs have been developed, having as primary objectives the precise tracking of setpoints by the system’s state variables and robustness to parametric changes or external perturbations. However, little has been done for the solution of the associated nonlinear optimal control problem. The purpose of this study/paper is to provide a novel nonlinear optimal control method for VSI-fed three-phase PMSMs.

Design/methodology/approach

The present article proposes a nonlinear optimal control approach for VSI-PMSMs. The nonlinear dynamic model of VSI-PMSMs undergoes approximate linearization around a temporary operating point, which is recomputed at each iteration of the control method. This temporary operating point is defined by the present value of the voltage source inverter-fed PMSM state vector and by the last sampled value of the motor’s control input vector. The linearization relies on Taylor series expansion and the calculation of the system’s Jacobian matrices. For the approximately linearized model of the voltage source inverter-fed PMSM, an H-infinity feedback controller is designed. For the computation of the controller’s feedback gains, an algebraic Riccati equation is iteratively solved at each time-step of the control method. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, to implement state estimation-based control for this system, the H-infinity Kalman filter is proposed as a state observer. The proposed control method achieves fast and accurate tracking of the reference setpoints of the VSI-fed PMSM under moderate variations of the control inputs.

Findings

The proposed H-infinity controller provides the solution to the optimal control problem for the VSI-PMSM system under model uncertainty and external perturbations. Actually, this controller represents a min–max differential game taking place between the control inputs, which try to minimize a cost function that contains a quadratic term of the state vector’s tracking error, the model uncertainty, and exogenous disturbance terms, which try to maximize this cost function. To select the feedback gains of the stabilizing feedback controller, an algebraic Riccati equation is repetitively solved at each time-step of the control algorithm. To analyze the stability properties of the control scheme, the Lyapunov method is used. It is proven that the VSI-PMSM loop has the H-infinity tracking performance property, which signifies robustness against model uncertainty and disturbances. Moreover, under moderate conditions, the global asymptotic stability properties of this control scheme are proven. The proposed control method achieves fast tracking of reference setpoints by the VSI-PMSM state variables, while keeping also moderate the variations of the control inputs. The latter property indicates that energy consumption by the VSI-PMSM control loop can be minimized.

Practical implications

The proposed nonlinear optimal control method for the VSI-PMSM system exhibits several advantages: Comparing to global linearization-based control methods, such as Lie algebra-based control or differential flatness theory-based control, the nonlinear optimal control scheme avoids complicated state variable transformations (diffeomorphisms). Besides, its control inputs are applied directly to the initial nonlinear model of the VSI-PMSM system, and thus inverse transformations and the related singularity problems are also avoided. Compared with backstepping control, the nonlinear optimal control scheme does not require the state-space description of the controlled system to be found in the triangular (backstepping integral) form. Compared with sliding-mode control, there is no need to define in an often intuitive manner the sliding surfaces of the controlled system. Finally, compared with local model-based control, the article’s nonlinear optimal control method avoids linearization around multiple operating points and does not need the solution of multiple Riccati equations or LMIs. As a result of this, the nonlinear optimal control method requires less computational effort.

Social implications

Voltage source inverter-fed permanent magnet synchronous motors (VSI-PMSMs) are widely used in industrial actuation and mechatronic systems in water pumping stations, as well as in the traction of transportation systems (such as electric vehicles and electric trains or ships with electric propulsion), The solution of the associated nonlinear control problem enables reliable and precise functioning of VSI-fd PMSMs. This in turn has a positive impact in all related industrial applications and in tasks of electric traction and propulsion where VSI-fed PMSMs are used. It is particularly important for electric transportation systems and for the wide use of electric vehicles as expected by green policies which aim at deploying electromotion and at achieving the Net Zero objective.

Originality/value

Unlike past approaches, in the new nonlinear optimal control method, linearization is performed around a temporary operating point, which is defined by the present value of the system’s state vector and by the last sampled value of the control input vector and not at points that belong to the desirable trajectory (setpoints). Besides, the Riccati equation, which is used for computing the feedback gains of the controller, is new, as is the global stability proof for this control method. Comparing with nonlinear model predictive control, which is a popular approach for treating the optimal control problem in industry, the new nonlinear optimal (H-infinity) control scheme is of proven global stability, and the convergence of its iterative search for the optimum does not depend on initial conditions and trials with multiple sets of controller parameters. It is also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems that can be transformed to the linear parameter varying form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 February 2019

Muhammad Taimoor, Li Aijun and Rooh ul Amin

The purpose of this paper aims to investigate an effective algorithm for different types of disturbances rejection. New dynamics are designed based on disturbance. Observer-based…

Abstract

Purpose

The purpose of this paper aims to investigate an effective algorithm for different types of disturbances rejection. New dynamics are designed based on disturbance. Observer-based sliding mode control (SMC) technique is used for approximation the disturbances as well as to stabilize the system effectively in presence of uncertainties.

Design/methodology/approach

This research work investigates the disturbances rejection algorithm for fixed-wing unmanned aerial vehicle. An algorithm based on SMC is introduced for disturbances rejection. Two types of disturbances are considered, the constant disturbance and the sinusoidal disturbance. The comprehensive lateral and longitudinal models of the system are presented. Two types of dynamics, the dynamics without disturbance and the new dynamics with disturbance, are presented. An observer-based algorithm is presented for the estimation of the dynamics with disturbances. Intensive simulations and experiments have been performed; the results not only guarantee the robustness and stability of the system but the effectiveness of the proposed algorithm as well.

Findings

In previous research work, new dynamics based on disturbances rejection are not investigated in detail; in this research work both the lateral and longitudinal dynamics with different disturbances are investigated.

Practical implications

As the stability is always important for flight, so the algorithm proposed in this research guarantees the robustness and rejection of disturbances, which plays a vital role in practical life for avoiding any kind of damage.

Originality/value

In the previous research work, new dynamics based on disturbances rejection are not investigated in detail; in this research work both the lateral and longitudinal dynamics with different disturbances are investigated. An observer-based SMC not only approximates the different disturbances and also these disturbances are rejected in order to guarantee the effectiveness and robustness.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 May 2008

Xin‐long Chen and Di Yang

The purpose of this paper is to examine the attitude control problem of a certain and big flexible satellite with unmodeled dynamics and unknown bounded disturbances and control…

Abstract

Purpose

The purpose of this paper is to examine the attitude control problem of a certain and big flexible satellite with unmodeled dynamics and unknown bounded disturbances and control input saturation; and to present a design method of robust adaptive controllers (RACs).

Design/methodology/approach

First, using the Lyapunov stability theory, it is shown that the proposed adaptive controller can guarantee the stability of the nonlinear system. Then, the parameters regulation method of the RAC is introduced. Finally, an RAC is designed for the object satellite model consisted of all the error‐source models.

Findings

The simulation results are compared with other results that are derived by using the typical PID controller. It is proved that the designed RAC has some properties of quickly response, high steady‐state precision and strong robustness.

Originality/value

The paper is of value in presenting a design method of RACs aiming at the object satellite with uncertainties and control input saturation.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 15 June 2018

Rihab Bkekri, Anouar Benamor, Mohamed Amine Alouane, Georges Fried and Hassani Messaoud

Assistive technology products are designed to provide additional accessibility to individuals who have physical or cognitive difficulties, impairments and disabilities. The…

Abstract

Purpose

Assistive technology products are designed to provide additional accessibility to individuals who have physical or cognitive difficulties, impairments and disabilities. The purpose of this paper is to deal with the control of a knee joint orthosis intended to be used for rehabilitation and assistive purpose; this control aims to reduce the influence of the uncertainties and eliminating the external disturbances in the system.

Design/methodology/approach

This paper deals with the robust adaptive sliding mode controller (ASMC) of human-driven knee joint orthosis system with mismatched uncertainties and external disturbances. The shank-orthosis system has been modeled and its parameters have been identified. This control reduces the effect of parameter uncertainties and external disturbances on the system performance and improves the system robustness as results. The ASMC was designed to offer the possibility to track the state of the reference model. Moreover, the Lyapunov stability theory was used to study the asymptotical stability of the ASMC.

Findings

The advantage of the robust ASMC method is the tracking precision and reducing the required time for eliminating external disturbances and uncertainties. The experimental results show in real-time in terms of stability and present that the advantages of this control approach are the position tracking and robustness.

Originality/value

In this paper, to deal with the parameter uncertainties of the human-driven knee joint orthosis, an ASMC was successfully applied based on sliding mode and Lyapunov stability theory. It has good dynamic response and tracking performance. Besides, the adaptive algorithm is simple, easy to achieve and has good adaptability and robustness against the parameter variations and external disturbances. The design technique is simple and efficient. The development of this control takes into consideration the perturbation, allowing to track a desired trajectory.

Details

Industrial Robot: An International Journal, vol. 45 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 May 2023

Guoqin Gao, Jun Sun and Yuanyuan Cao

This paper aims to solve the problems of the synchronization between branches and the uncertainties such as joint friction, load variation and external interference of a hybrid…

Abstract

Purpose

This paper aims to solve the problems of the synchronization between branches and the uncertainties such as joint friction, load variation and external interference of a hybrid mechanism. The controller is used to improve the synchronization and robustness of the hybrid mechanism system and achieve both finite time convergence and chattering-free sliding mode.

Design/methodology/approach

First, the dynamic model of hybrid mechanism containing lumped uncertainties is formulated by the Lagrange method, and a composite error based on coupling synchronization error and the end-effector tracking error is set up in the task space. Then, by combining the finite time super twisting sliding mode control algorithm, a composite error-based finite time super twisting sliding mode synchronous control law is designed to make the end-effector tracking error and coupling synchronization error achieve better tracking performance and convergence performance. Finally, the Lyapunov stability of the control law and the finite-time convergence of the composite error are proved theoretically.

Findings

To verify the effectiveness of the proposed control method, simulations and experiments for the prototype system of the hybrid mechanism are conducted. The results show that the proposed control method can achieve better tracking performance and convergence performance.

Originality/value

This is a new innovation for a hybrid mechanism containing lumped uncertainties to improve the robustness, convergence performance, tracking performance and synchronization of the system.

Details

Robotic Intelligence and Automation, vol. 43 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 3 May 2013

Haizhao Liang, Zhaowei Sun and Jianying Wang

This paper aims to investigate the fast attitude coordinated control problem for rigid satellite swarms with communication delays.

Abstract

Purpose

This paper aims to investigate the fast attitude coordinated control problem for rigid satellite swarms with communication delays.

Design/methodology/approach

Based on behavior‐based control approach, the attitude control system is designed to guarantee that the attitude of the satellite swarm converge to a dynamic reference state in finite time. A fast sliding mode is developed to improve the convergence rate and robustness of the control system. All the effects of communication delays, parameter uncertainties and external disturbances are taken into account simultaneously, and the communication topology of the satellite swarm can be arbitrary types. Numerical simulations are provided to demonstrate the analytic results.

Findings

Despite the existence of communication delays, parameter uncertainties and external disturbances, the stability of the closed‐loop system can be successfully guaranteed and the proposed control strategies are effective to overcome these unexpected phenomena subject to arbitrary communication topology.

Originality/value

This paper introduces a fast terminal sliding mode control method which can guarantee the fast convergence of the attitude state of the satellite swarm in the presence of communication delays, switched communication topology, parameter uncertainties and external disturbances.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 27 January 2021

Azam Hokmabadi and Mahdi Khodabandeh

The purpose of this paper is to design a controller for a quadrotor only by using input–output data without a need for the system model.

177

Abstract

Purpose

The purpose of this paper is to design a controller for a quadrotor only by using input–output data without a need for the system model.

Design/methodology/approach

Tracking control for the quadrotor is considered by using unfalsified control, which is one of the most recent strategies of robust adaptive control. The main assumption in unfalsified control design is that there is no access to the system model. Also, ideal path tracking and controlling the quadrotor are been paid attention to in the presence of external disturbances and uncertainties. First, unfalsified control method is introduced which is a data-driven and model-free approach in the field of adaptive control. Next, model of the quadrotor and unfalsified control design for the quadrotor are presented. Second, design of a control bank consisting of four proportional integral derivative controllers and a sliding mode controller is carried out.

Findings

A particular innovation on an unfalsified control algorithm in this paper is use of a generalized cost function in the hysteresis switching algorithm to find the best controller.

Originality/value

Finally, the performance and robustness of the designed controllers are investigated by simulation studies in various operating conditions including reference trajectory changes, facing to wind disturbance, uncertainty of the system and changes in payload, which show acceptable performances.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 870