Search results

1 – 5 of 5
Open Access
Article
Publication date: 12 May 2020

Tomasz Matusiak, Krzysztof Swiderski, Jan Macioszczyk, Piotr Jamroz, Pawel Pohl and Leszek Golonka

The purpose of this paper is to present a study on miniaturized instruments for analytical chemistry with a microplasma as the excitation source.

Abstract

Purpose

The purpose of this paper is to present a study on miniaturized instruments for analytical chemistry with a microplasma as the excitation source.

Design/methodology/approach

The atmospheric pressure glow microdischarge could be ignited inside a ceramic structure between a solid anode and a liquid cathode. As a result of the cathode sputtering of the solution, it was possible to determine its chemical composition by analyzing the emission spectra of the discharge. Cathodes with microfluidic channels and two types of anodes were constructed. Both types were tested through experimentation. Impact of the electrodes geometry on the discharge was established. A cathode aperture of various sizes and anodes made from different materials were used.

Findings

The spectroscopic properties of the discharge and its usefulness in the analysis depended on the ceramic structure. The surface area of the cathode aperture and the flow rate of the solution influence on the detection limits (DLs) of Zn and Cd.

Originality/value

Constructed ceramic structures were able to excite elements and their laboratory-size systems. During the experiments, Zn and Cd were detected with DLs 0.024 and 0.053 mg/L, respectively.

Details

Sensor Review, vol. 40 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 16 April 2020

Chia-Jui Hsu, Jenifer Barrirero, Rolf Merz, Andreas Stratmann, Hisham Aboulfadl, Georg Jacobs, Michael Kopnarski, Frank Mücklich and Carsten Gachot

To decrease wear and friction, zinc dialkyldithiophosphate (ZDDP) has been used in engine oil for several decades, but the mechanism of the tribofilm formation is still unclear…

1662

Abstract

Purpose

To decrease wear and friction, zinc dialkyldithiophosphate (ZDDP) has been used in engine oil for several decades, but the mechanism of the tribofilm formation is still unclear. The purpose of this study is to characterize the chemical details of the tribofilm by using high-resolution approaching.

Design/methodology/approach

An ISO VG 100 mineral oil mixed with ZDDP was used in sliding tests on cylindrical roller bearings. Tribofilm formation was observed after 2 h of the sliding test. X-ray photoelectron spectroscopy (XPS) and atom probe tomography (APT) were used for chemical analysis of the tribofilm.

Findings

The results show that the ZDDP tribofilm consists of the common ZDDP elements along with iron oxides. A considerable amount of zinc and a small amount of sulfur were observed. In particular, an oxide interlayer with sulfur enrichment was revealed by APT between the tribofilm and the steel substrate. The depth profile of the chemical composition was obtained, and a tribofilm of approximately 40 nm thickness was identified by XPS.

Originality/value

A sulfur enrichment at the interface is observed by APT, which is beneath an oxygen enrichment. The clear evidence of the S interlayer confirms the hard and soft acids and bases principle.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0035/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 28 January 2022

Kiranmai Uppuluri and Dorota Szwagierczak

The purpose of this work was to characterize NiMn2O4 spinel-based thermistor powder, to use it in screen printing technology to fabricate temperature sensors, to study their…

1066

Abstract

Purpose

The purpose of this work was to characterize NiMn2O4 spinel-based thermistor powder, to use it in screen printing technology to fabricate temperature sensors, to study their performance for different sintering temperatures of thermistor layer, with and without insulative cover, as well as to investigate stability of the fabricated thermistors and their applicability in water quality monitoring.

Design/methodology/approach

After the characterization of starting NiMn2O4 spinel-based thermistor powder, it was converted to thick film paste which was screen printed on alumina substrate. Thermistor layers were sintered at four different sintering temperatures: 980°C, 1050°C, 1150°C and 1290°C. An interdigitated pattern of Ag-Pd conductive layer was used to reduce the resistance. Temperature-resistance characteristics were investigated in air and water, with and without insulative cover atop the thermistor layer. Stability of the fabricated thermistors after aging at 120°C for 300 h was also examined.

Findings

Thick film NiMn2O4 spinel thermistors, prepared by screen printing and sintering in the temperature range 980°C–1290°C, exhibited good negative temperature coefficient (NTC) characteristics in the temperature range −30°C to 145°C, including high temperature coefficient of resistance, good stability and applicability in water.

Originality/value

This study explores the range of sintering temperature that can be applied for NiMn2O4 thermistor thick films without compromising on the temperature sensing performance in air and water, as well as stability of the thermistors after aging at elevated temperatures.

Details

Sensor Review, vol. 42 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 4 July 2022

Kai Zhuang, Jieru Xiao and Xiaolong Yang

The purpose of this paper is to show that the droplet impact phenomenon is important for the advancement of industrial technologies in many fields such as spray cooling and ink…

Abstract

Purpose

The purpose of this paper is to show that the droplet impact phenomenon is important for the advancement of industrial technologies in many fields such as spray cooling and ink jet printing. Droplet bouncing on the nonwetting surfaces is a special phenomenon in the impact process which has attracted lots of attention.

Design/methodology/approach

In this work, the authors fabricated two kinds of representative nonwetting surfaces including superhydrophobic surfaces (SHS) and a slippery liquid-infused porous surface (SLIPS) with advanced UV laser processing.

Findings

The droplet bouncing behavior on the two kinds of nonwetting surfaces were compared in the experiments. The results indicate that the increasing Weber number enlarges the maximum droplet spreading diameter and raises the droplet bounce height but has no effect on contact time.

Originality/value

In addition, the authors find that the topological SHS and SLIPS with the laser-processed microwedge groove array produce asymmetric droplet bouncing with opposite offset direction. Microdroplets can be continuously transported without any additional driving force on such a topological SLIPS. The promising method for manipulating droplets has potential applications for the droplet-based microfluidic platforms.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 6 September 2022

Agnieszka Chmielewska, Bartlomiej Adam Wysocki, Elżbieta Gadalińska, Eric MacDonald, Bogusława Adamczyk-Cieślak, David Dean and Wojciech Świeszkowski

The purpose of this paper is to investigate the effect of remelting each layer on the homogeneity of nickel-titanium (NiTi) parts fabricated from elemental nickel and titanium…

1301

Abstract

Purpose

The purpose of this paper is to investigate the effect of remelting each layer on the homogeneity of nickel-titanium (NiTi) parts fabricated from elemental nickel and titanium powders using laser powder bed fusion (LPBF). In addition, the influence of manufacturing parameters and different melting strategies, including multiple cycles of remelting, on printability and macro defects, such as pore and crack formation, have been investigated.

Design/methodology/approach

An LPBF process was used to manufacture NiTi alloy from elementally blended powders and was evaluated with the use of a remelting scanning strategy to improve the homogeneity of fabricated specimens. Furthermore, both single melt and up to two remeltings were used.

Findings

The results indicate that remelting can be beneficial for density improvement as well as chemical and phase composition homogenization. Backscattered electron mode in scanning electron microscope showed a reduction in the presence of unmixed Ni and Ti elemental powders in response to increasing the number of remelts. The microhardness values of NiTi parts for the different numbers of melts studied were similar and ranged from 487 to 495 HV. Nevertheless, it was observed that measurement error decreases as the number of remelts increases, suggesting an increase in chemical and phase composition homogeneity. However, X-ray diffraction analysis revealed the presence of multiple phases regardless of the number of melt runs.

Originality/value

For the first time, to the best of the authors’ knowledge, elementally blended NiTi powders were fabricated via LPBF using remelting scanning strategies.

Access

Only Open Access

Year

Content type

1 – 5 of 5