Search results

1 – 10 of 236
Article
Publication date: 23 November 2020

Sheng Chen, Yuming Xing, Xin Liu and Liang Zhao

The purpose of this study is to investigate the effect of the injection angle α on the spray structures of an air-blast atomizer and help enhance the understanding of droplet-gas…

Abstract

Purpose

The purpose of this study is to investigate the effect of the injection angle α on the spray structures of an air-blast atomizer and help enhance the understanding of droplet-gas mixing process in such atomizers in the engineering domain.

Design/methodology/approach

The phenomena in the air-blast atomizer were numerically modelled using the computational fluid dynamics software Fluent 17.2. The Euler-Lagrange approach was applied to model the droplet tracking and droplet-gas interaction in studied cases. The standard k-ε model was used to simulate the turbulent flow. A model with a modified drag coefficient was used to consider the effects of the bending of the liquid column and its penetration in the primary breakup region. The Kelvin-Helmholtz, Rayleigh-Taylor model was applied to consider the secondary breakup of the droplets.

Findings

The basic spatial distribution and spray structures of the droplets corresponding to the angled liquid jet (α = 60°) were similar to those reported in liquid jets injected transversely into a gaseous crossflow studies. The injection angle α did not considerably influence the averaged Sauter to mean diameter (SMD) of the cross-sections. However, the spray structures pertaining to α = 30°, α = 60° and α = 90° were considerably different. In the case of the atomizer with multiple injections, a “collision region” was observed at α = 60° and characterized by a higher ci and larger averaged SMD in the central parts of the cross-sections.

Originality/value

The injection angle α is a key design parameter for air-blast atomizers. The findings of this study can help enhance the understanding of the droplet-gas mixing process in air-blast atomizers. Engineers who design air-blast atomizers and face new challenges in the process can refer to the presented findings to obtain the desired atomization performance. The code has been validated and can be used in the engineering design process of the gas-liquid jet atomizer.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 October 2002

Heping Chen, Weihua Sheng, Ning Xi, Mumin Song and Yifan Chen

Automatic trajectory generation for spray painting is highly desirable for today’s automotive manufacturing. Generating paint gun trajectories for free‐form surfaces to satisfy…

1182

Abstract

Automatic trajectory generation for spray painting is highly desirable for today’s automotive manufacturing. Generating paint gun trajectories for free‐form surfaces to satisfy paint thickness requirements is still highly challenging due to the complex geometry of free‐form surfaces. In this paper, a CAD‐guided paint gun trajectory generation system for free‐form surfaces has been developed. The system utilizes the CAD information of a free‐form surface to be painted and a paint gun model to generate a paint gun trajectory to satisfy the paint thickness requirements. A paint thickness verification method is also provided to verify the generated trajectories. The simulation results have shown that the trajectory generation system achieves satisfactory performance. This trajectory generation system can also be applied to generate trajectories for many other CAD‐guided robot trajectory planning applications.

Details

Industrial Robot: An International Journal, vol. 29 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 18 November 2021

Joanna Grochowalska, Piotr Jaworski, Łukasz Jan Kapusta and Jerzy Kowalski

In the cylinders of a marine diesel engine, self-ignition occurs in a very short time after the fuel injection into the combustion chamber. Therefore, this paper aims to develop a…

Abstract

Purpose

In the cylinders of a marine diesel engine, self-ignition occurs in a very short time after the fuel injection into the combustion chamber. Therefore, this paper aims to develop a model of diesel fuel spray for the early stage of fuel spray in the marine diesel engine. The main technical aspects such as nozzle diameter of the marine engine injector and backpressure in the combustion chamber were taken into consideration.

Design/methodology/approach

In this paper, laboratory experimental studies were carried out to determine parameters of fuel spray in an early stage of injection in the marine diesel engine. The optical measuring Mie scattering technique was used to record the fuel injection process. The working space was a constant volume chamber. The backpressure parameters in the constant volume chamber were the same as during the operation of the marine diesel engine. Based on the experimental studies and important Hiroyasu and Arai models of fuel spray presented in literature was proposed new model of fuel spray parameters for marine diesel injectors.

Findings

In this paper, the proposed new model of the two main parameters described fuel spray evolution”: new model of spray tip penetration (STP) and spray cone angle (SCA). New model propagation of fuel STP in time was included the influence of nozzle diameter and backpressure. The proposed model has a lower error, about 15%–34%, than the model of Hiroyasu and Arai. Moreover, a new model of the evolution over time of the SCA is developed.

Research limitations/implications

In the future research of fuel spray process must be taken influence of the fuel temperature. Diesel fuel has a different density and viscosity in dependence of fuel temperature. Therefore are predicted of the expansion about influence of fuel temperature, new model of fuel spray for a marine diesel engine. The main limitations occurring in the research are not possible to carry out the research while real operation marine diesel engine.

Originality/value

An experimental test was carried out for a real fuel injector of a marine diesel engine. Design parameters and fuel injection parameters were selected on the basis of the actual one. In the literature, SCA is defined as a constant parameter for the specific preliminary data. A new model for the early stage of fuel spray of SCA propagation in time has been proposed. The early stage of fuel spray is especially important, because in this time comes in there to fuel self-ignition.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2020

Alain Fossi, Alain DeChamplain, Benjamin Akih-Kumgeh and Jeffrey Bergthorson

This study aims to deal with the large eddy simulation (LES) of an ignition sequence and the resulting steady combustion in a swirl-stabilized liquid-fueled combustor. Particular…

Abstract

Purpose

This study aims to deal with the large eddy simulation (LES) of an ignition sequence and the resulting steady combustion in a swirl-stabilized liquid-fueled combustor. Particular attention is paid to the ease of handling the numerical tool, the accuracy of the results and the reasonable computational cost involved. The primary aim of the study is to appraise the ability of the newly developed computational fluid dynamics (CFD) methodology to retrieve the spark-based flame kernel initiation, its propagation until the full ignition of the combustion chamber, the flame stabilization and the combustion processes governing the steady combustion regime.

Design/methodology/approach

The CFD model consists of an LES-based spray module coupled to a subgrid-scale ignition model to capture the flame kernel initiation and the early stage of the flame kernel growth, and a combustion model based on the mixture fraction-progress variable formulation in the line of the flamelet generated manifold (FGM) method to retrieve the subsequent flame propagation and combustion properties. The LES-spray module is based on an Eulerian-Lagrangian approach and includes a fully two-way coupling at each time step to account for the interactions between the liquid and the gaseous phases. The Wall-Adapting Local Eddy-viscosity (WALE) model is used for the flow field while the eddy diffusivity model is used for the scalar fluxes. The fuel is liquid kerosene, injected in the form of a polydisperse spray of droplets. The spray dynamics are tracked using the Lagrangian procedure, and the phase transition of droplets is calculated using a non-equilibrium evaporation model. The oxidation mechanism of the Jet A-1 surrogate is described through a reduced reaction mechanism derived from a detailed mechanism using a species sensitivity method.

Findings

By comparing the numerical results with a set of published data for a swirl-stabilized spray flame, the proposed CFD methodology is found capable of capturing the whole spark-based ignition sequence in a liquid-fueled combustion chamber and the main flame characteristics in the steady combustion regime with reasonable computing costs.

Research limitations/implications

The proposed CFD methodology simulates the whole ignition sequence, namely, the flame kernel initiation, its propagation to fully ignite the combustion chamber, and the global flame stabilization. Due to the lack of experimental ignition data on this liquid-fueled configuration, the ability of the proposed CFD methodology to accurately predict ignition timing was not quantitatively assessed. It would, therefore, be interesting to apply this CFD methodology to other configurations that have experimental ignition data, to quantitatively assess its ability to predict the ignition timing and the flame characteristics during the ignition sequence. Such further investigations will not only provide further validation of the proposed methodology but also will potentially identify its shortfalls for better improvement.

Practical implications

This CFD methodology is developed by customizing a commercial CFD code widely used in the industry. It is, therefore, directly applicable to practical configurations, and provides not only a relatively straightforward approach to predict an ignition sequence in liquid-fueled combustion chambers but also a robust way to predict the flame characteristics in the steady combustion regime as significant improvements are noticed on the prediction of slow species.

Originality/value

The incorporation of the subgrid ignition model paired with a combustion model based on tabulated chemistry allows reducing computational costs involved in the simulation of the ignition phase. The incorporation of the FGM-based tabulated chemistry provides a drastic reduction of computing resources with reasonable accuracy. The CFD methodology is developed using the platform of a commercial CFD code widely used in the industry for relatively straightforward applicability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2015

Alain Fossi, Alain DeChamplain and Benjamin Akih-Kumgeh

The purpose of this paper is to numerically investigate the three-dimensional (3D) reacting turbulent two-phase flow field of a scaled swirl-stabilized gas turbine combustor using…

Abstract

Purpose

The purpose of this paper is to numerically investigate the three-dimensional (3D) reacting turbulent two-phase flow field of a scaled swirl-stabilized gas turbine combustor using the commercial computational fluid dynamic (CFD) software ANSYS FLUENT. The first scope of the study aims to explicitly compare the predictive capabilities of two turbulence models namely Unsteady Reynolds Averaged Navier-Stokes and Scale Adaptive Simulation for a reasonable trade-off between accuracy of results and global computational cost when applied to simulate swirl-stabilized spray combustion. The second scope of the study is to couple chemical reactions to the turbulent flow using a realistic chemistry model and also to model the local chemical non-equilibrium(NEQ) effects caused by turbulent strain such as flame stretching.

Design/methodology/approach

Standard Eulerian and Lagrangian formulations are used to describe both gaseous and liquid phases, respectively. The computing method includes a two-way coupling in which phase properties and spray source terms are interchanging between the two phases within each coupling time step. The fuel used is liquid jet-A1 which is injected in the form of a polydisperse spray and the droplet evaporation rate is calculated using the infinite conductivity model. One-component (n-decane) and two-component fuels (n-decane+toluene) are used as jet-A1 surrogates. The combustion model is based on the mean mixture fraction and its variance, and a presumed-probability density function is used to model turbulent-chemistry interactions. The instantaneous thermochemical state necessary for the chemistry tabulation is determined by using initially the equilibrium (EQ) assumption and thereafter, detailed NEQ calculations through the steady flamelets concept. The combustion chemistry of these surrogates is represented through a reduced chemical kinetic mechanism (CKM) comprising 1,045 reactions among 139 species, derived from the detailed jet-A1 surrogate model, JetSurf 2.0 using a sensitivity based method, Alternate Species Elimination.

Findings

Numerical results of the gas velocity, the gas temperature and the species molar fractions are compared with their experimental counterparts obtained from a steady state flame available in the literature. It is observed that, SAS coupled to the tabulated flamelet-based chemistry, predicts reasonably the main flame trends, while URANS even provided with the same combustion model and computing resources, leads to a poor prediction of the global flame trends, emphasizing the asset of a proper resolution when simulating spray flames.

Research limitations/implications

The steady flamelet model even coupled with a robust turbulence model does not reproduce accurately the trend of species with slow oxidation kinetics such as CO and H2, because of the restrictiveness of the solutions space of flamelet equations and the assumption of unity Lewis for all species.

Practical implications

This work is adding a contribution for spray flame modeling and can be seen as an extension to the significant efforts for the modeling of gaseous flames using robust turbulence models coupled with the tabulated flamelet-based chemistry approach to considerably reduce computing cost. The exclusive use of a commercial CFD code widely used in the industry allows a direct application of this simulation approach to industrial configurations while keeping computing cost reasonable.

Originality/value

This study is useful to engineers interested in designing combustors of gas turbines and others combustion systems fed with liquid fuels.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 January 2022

Sivakumar Subramani, Sivaram Nantha Muthu and Narendra Laxman Gajbhiye

This paper aims to analyze spray characteristics of rapeseed oil as a cutting fluid in minimum quantity lubrication (MQL) through numerical simulation.

Abstract

Purpose

This paper aims to analyze spray characteristics of rapeseed oil as a cutting fluid in minimum quantity lubrication (MQL) through numerical simulation.

Design/methodology/approach

Computational fluid dynamics (CFD) is used in this numerical study. The Eulerian–Lagrangian approach was used in this simulation to project trajectories of the droplets as the cutting fluid is dispersed into a continuous phase, i.e. air. The spray characteristics of the multiphase fluids were obtained numerically using the discrete phase model (DPM).

Findings

The spray characteristics such as particle diameter and velocity were obtained for various pressure level, flow rate and nozzle diameter. The particle diameter decreased with increased pressure, whereas the velocity increased with increased pressure, flow rate and nozzle diameter. The changes in particle diameter are insignificant with respect to flow rate and nozzle diameter. DPM is an effective tool for machining processes to determine the behaviour of different cutting fluids under the MQL system.

Originality/value

In this study, the droplet and velocity distribution of vegetable oil, i.e. rapeseed oil, was investigated at the different air pressure, flow rate and nozzle diameter. This study will give insight for the manufacturer to select the better MQL system parameters to reduce the cost, time of machining processes and enhance the sustainability of the process.

Details

Industrial Lubrication and Tribology, vol. 74 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 1931

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Committee, Reports and Technical Notes of the U.S. National Advisory…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Committee, Reports and Technical Notes of the U.S. National Advisory Committee for Aeronautics, and publications of other similar research bodies as issued

Details

Aircraft Engineering and Aerospace Technology, vol. 3 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 May 1932

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Committee, Reports and Technical Notes of the U.S. National Advisory…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Committee, Reports and Technical Notes of the U.S. National Advisory Committee for Aeronautics, and publications of other similar research bodies as issued

Details

Aircraft Engineering and Aerospace Technology, vol. 4 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 30 August 2013

Jih Lung Lin

Low combustion completeness has been the main defect of hybrid rockets. The present study tries to address the problem by bringing up the setup of the precombustion zone, which do…

Abstract

Purpose

Low combustion completeness has been the main defect of hybrid rockets. The present study tries to address the problem by bringing up the setup of the precombustion zone, which do not increase the manufacture cost and complexity.

Design/methodology/approach

A precombustion zone can provide a space for the liquid oxidizer to vaporize before entering the combustion zone, and prevents the endothermic effect of liquid oxidizer which can block the chemical reaction as well as the fuel regression. Therefore, this design is expected to raise the combustion completeness. The numerical simulation focuses on the flow field inside a cylindrical hybrid combustor. The distribution of temperature, combustion mode, mass fraction of reactants, velocity, combustion completeness, and solid‐fuel regression rate are presented.

Findings

With the setup of prevaporized zone of appropriate length, the upstream separation bubble which is unobvious for the case with no prevaporized zone can increase the mixing of reactants, and then increases the combustion completeness. Besides, the radial temperature distribution is more uniform. But when the length of prevaporized zone exceeds about one fourth of the combustor length, due to no enough space for the reactants to react, the combustion completeness begins to decrease and the radial temperature distribution becomes uneven. Therefore, a prevaporized zone with about 24 per cent of the combustor length can have optimum combustion completeness in the present study.

Originality/value

This study provides a useful design to raise the combustion completeness of a traditional hybrid rocket. However, the manufacture cost and complexity are not increased. So the results can be a good reference for the hybrid rocket designers.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 January 1934

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Committee, Reports and Technical Notes of the U.S. National Advisory…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Committee, Reports and Technical Notes of the U.S. National Advisory Committee for Aeronautics, and publications of other similar research bodies as issued

Details

Aircraft Engineering and Aerospace Technology, vol. 6 no. 1
Type: Research Article
ISSN: 0002-2667

1 – 10 of 236