Search results

1 – 10 of over 1000
Article
Publication date: 28 June 2022

Jie Li, Jiyuan Wu, Chunlei Tu and Xingsong Wang

Automatic robots can improve the efficiency of liquefied petroleum gas (LPG) tank inspection and maintenance, but it is difficult to achieve high-precision spatial positioning and…

Abstract

Purpose

Automatic robots can improve the efficiency of liquefied petroleum gas (LPG) tank inspection and maintenance, but it is difficult to achieve high-precision spatial positioning and navigation on tank surfaces. The purpose of this paper is to develop a spatial positioning robotic system for tank inspection. The robot can accurately identify and track weld paths. The positioning system can complete robot’s spatial positioning on tank surfaces.

Design/methodology/approach

A tank inspection robot with curvature-adaptive transmission mechanisms is designed in this study. A weld path recognition method based on deep learning is proposed to accurately identify and extract weld paths. Integrated multiple sensors, the positioning system is developed to improve the robot’s spatial positioning accuracy. Experiments are conducted on a cylindrical tank to test weld seam tracking accuracy and spatial positioning performance of the robotic system. The practicality of the robotic system is then verified in field tests.

Findings

The robot can accurately identify and track weld seams with a maximum drift angle of 4° and a maximum offset distance of ±30 mm. The positioning system has excellent positioning accuracy and stability. The maximum angle and height errors are 3° and 0.08 m, respectively.

Originality/value

The positioning system can improve the autonomous performance of inspection robots and solve the problems of weld path recognition and spatial positioning. Application of the robotic system can promote the automatic inspection and maintenance of LPG tanks.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 July 2008

A. Nicolet, F. Zolla, Y. Ould Agha and S. Guenneau

This paper aims to review various techniques used in computational electromagnetism such as the treatment of open problems, helicoidal geometries and the design of arbitrarily…

Abstract

Purpose

This paper aims to review various techniques used in computational electromagnetism such as the treatment of open problems, helicoidal geometries and the design of arbitrarily shaped invisibility cloaks. This seemingly heterogeneous list is unified by the concept of geometrical transformation that leads to equivalent materials. The practical set‐up is conveniently effected via the finite element method.

Design/methodology/approach

The change of coordinates is completely encapsulated in the material properties.

Findings

The most significant examples are the simple 2D treatment of helicoidal geometries and the design of arbitrarily shaped invisibility cloaks.

Originality/value

The paper provides a unifying point of view, bridging several techniques in electromagnetism.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 June 2021

Prashant G. Khakse and Vikas M. Phalle

This paper aims to describe how successfully a particular restrictor delivers its best in increasing the conical journal bearing performance. The restrictors are used in the…

Abstract

Purpose

This paper aims to describe how successfully a particular restrictor delivers its best in increasing the conical journal bearing performance. The restrictors are used in the hole-entry conical journal bearing subjected to hybrid mode. Thus, the restrictors, like constant flow valve (CFV), orifice and capillary, are studied comparatively.

Design/methodology/approach

Numerical simulation for the bearing results with the three restrictors are obtained by using finite element method (FEM) under the well-known modified Reynolds equation.

Findings

When the hole-entry conical journal bearings, with the restrictor design parameter range C¯s2 = 0.03 – 0.09, are operated, the results obtained are quite distinctive and significant. It indicates that the CFV restrictor-based conical bearing gives enhanced performance in comparison to orifice and capillary restrictors. Moreover, it suggests the performance-wise sequence of the restrictors in hybrid bearings as CFV > Orifice > Capillary.

Originality/value

The outcome of the research paper will give insight to help the bearing designer to choose the particular restrictor in hybrid conical bearing depending on the industrial need.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 September 1999

Singva Ma

The new set of standards ISO 10303 “STEP” makes it possible to give a complete representation of a product, using the description language EXPRESS. A part of STEP is devoted to…

Abstract

The new set of standards ISO 10303 “STEP” makes it possible to give a complete representation of a product, using the description language EXPRESS. A part of STEP is devoted to the finite element analysis. This paper presents a brief overview of the architecture and the methodology of STEP and EXPRESS, with special attention to the part concerning the finite element analysis. The possibility to use it in modelling electromagnetic phenomena will be discussed. An example showing the description of a typical problem in electromagnetism will be implemented using EXPRESS.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 November 2021

Manlu Liu, Rui Lin, Maotao Yang, Anaid V. Nazarova and Jianwen Huo

The characteristics of spherical robots, such as under-drive, non-holonomic constraints and strong coupling, make it difficult to establish its motion control model accurately. To…

Abstract

Purpose

The characteristics of spherical robots, such as under-drive, non-holonomic constraints and strong coupling, make it difficult to establish its motion control model accurately. To improve the anti-interference performance of spherical robots in practical engineering, this paper proposes a spherical robot motion controller based on auto-disturbance rejection control (ADRC) with parameter tuning.

Design/methodology/approach

This paper considers the influences of the spherical shell, internal frame and pendulum on the movement of the spherical robot during the rotation to establish the multi-body dynamics model of the XK-I spherical robot. Due to the serious coupling problem of the dynamic model, the motion control state equation is constructed using linearization and decoupling. The XK-I spherical robot PSO-ADRC motion controller with parameter tuning function is designed by combining the state equation with the particle swarm optimization (PSO) algorithm. Finally, experiments are performed to evaluate the feasibility of PSO-ADRC in an actual case compared to ADRC, PSO-PID and PID.

Findings

By analyzing the required time to reach the expected value, the control stability and the fluctuation range of the standard deviation after reaching the expected value, the superiority of PSO-ADRC to ADRC, PSO-PID and PID is demonstrated in terms of the speed and anti-interference ability.

Practical implications

The proposed method can be applied to the robot control field.

Originality/value

A parameter-tuning method for auto-disturbance-rejection motion control of the spherical robot is proposed. According to the experimental results, the anti-interference ability of the spherical robot moving on uneven ground is improved. Therefore, it provides a foundation for the autonomous environmental monitoring of the spherical robot equipped with sensors.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 May 2016

Mohammed Ismail, Derek Ingham, Kevin J Hughes, Lin Ma and Mohamed Pourkashanian

The purpose of this paper is to numerically investigate the effects of the shape on the performance of the cathode catalyst agglomerate used in polymer electrolyte fuel cells…

Abstract

Purpose

The purpose of this paper is to numerically investigate the effects of the shape on the performance of the cathode catalyst agglomerate used in polymer electrolyte fuel cells (PEFCs). The shapes investigated are slabs, cylinders and spheres.

Design/methodology/approach

Three 1D models are developed to represent the slab like, cylindrical and spherical agglomerates, respectively. The models are solved for the concentration of the dissolved oxygen using a finite element software, COMSOL Multiphysics®. “1D” and “1D axisymmetric” schemes are used to model the slab like and cylindrical agglomerates, respectively. There is no one-dimensional scheme available in COMSOL Multiphysics® for spherical coordinate systems. To resolve this, the governing equation in “1D” scheme is mathematically modified to match that of the spherical coordinate system.

Findings

For a given length of the diffusion path, the variation in the performances of the investigated agglomerates is dependent on the operational overpotential. Under low magnitudes of the overpotentials, where the performance is mainly limited by reaction, the slab-like agglomerate outperforms the spherical and cylindrical agglomerates. In contrast, under high magnitudes of the overpotentials where the agglomerate performance is mainly limited by diffusion, the spherical and cylindrical agglomerates outperform the slab-like agglomerate.

Practical implications

The current advances in the nano-fabrication technology gives more flexibility in designing the catalyst layers in PEFCs to the desired structures. If the design of the agglomerate catalyst is to be assessed, the current micro-scale modelling offers an efficient and rapid way forward.

Originality/value

The current micro-scale modelling is an efficient alternative to developing a full (or half) fuel cell model to evaluate the effects of the agglomerate structure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2013

Michael Kijowski and Ludger Klinkenbusch

The purpose of this paper is to compare exact and Physical‐Optics‐approximated results of the electromagnetic field scattered by a perfectly conducting semi‐infinite elliptic cone…

Abstract

Purpose

The purpose of this paper is to compare exact and Physical‐Optics‐approximated results of the electromagnetic field scattered by a perfectly conducting semi‐infinite elliptic cone illuminated by a plane wave. The results are important for judging the reliability of Physical‐Optics based field estimations of electrically large environments which include tip‐like structures (e.g. airport scenarios).

Design/methodology/approach

The spherical‐multipole analysis is applied to determine the exact total field outside a perfectly conducting semi‐infinite elliptic cone. The underlying boundary‐value problem is solved by a separation of variables of the Helmholtz equation in sphero‐conal coordinates leading to a two‐parametric eigenvalue problem with two coupled Lamé differential equations. The exact scattered far field is determined from the exact surface current on the cone using a bilinear expansion of the dyadic Green's function. The Physical‐Optics (PO) field is evaluated similarly starting from a surface current which is directly found from the incident magnetic field.

Findings

The diffraction coefficients of the exact scattered field and the PO scattered field are compared for different parameters (polarization and angle of incidence) of the plane wave. Reasonably well corresponding results are obtained for those angles of incidence of the plane wave where the entire cone is illuminated, otherwise the error of the PO approximation is increasing not just in the shadow region.

Originality/value

If carefully applied, the Physical‐Optics method can be useful and sufficient to obtain fields scattered by cone‐like structures.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 1989

M.F.R. COORAY and I.R. CIRIC

Rotational‐translational addition theorems for the vector spheroidal wave functions Ma(i)mn(h; ξ, η, φ) and Na(i)mn(h; ξ, η, φ), i = 1,2,3,4, are derived from those for the…

Abstract

Rotational‐translational addition theorems for the vector spheroidal wave functions Ma(i)mn(h; ξ, η, φ) and Na(i)mn(h; ξ, η, φ), i = 1,2,3,4, are derived from those for the corresponding scalar spheroidal wave functions ψ(i)mn(h; ξ, η, φ). A vector spheroidal wave function defined in one spheroidal coordinate system (h; ξ, η, φ) is expressed in terms of a series of vector spheroidal wave functions defined in another spheroidal coordinate system (h′; ξ′, η′, φ′), which is rotated and translated with respect to the first one. These theorems allow a rigorous treatment of boundary value problems relative to time‐harmonic vector field waves in the presence of a system of spheroids with arbitrary orientations. As a special case, general rotational‐translational addition theorems for vector spherical wave functions are also presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 8 no. 3
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 21 August 2009

John F. Peters, Mark A. Hopkins, Raju Kala and Ronald E. Wahl

The purpose of this paper is to present a simple non‐symmetric shape, the poly‐ellipsoid, to describe particles in discrete element simulations that incur a computational cost…

Abstract

Purpose

The purpose of this paper is to present a simple non‐symmetric shape, the poly‐ellipsoid, to describe particles in discrete element simulations that incur a computational cost similar to ellipsoidal particles.

Design/methodology/approach

Particle shapes are derived from joining octants of eight ellipsoids, each having different aspect ratios, across their respective principal planes to produce a compound surface that is continuous in both surface coordinate and normal direction. Because each octant of the poly‐ellipsoid is described as an ellipsoid, the mathematical representation of the particle shape can be in the form of either an implicit function or as parametric equations.

Findings

The particle surface is defined by six parameters (vs the 24 parameters required to define the eight component ellipsoids) owing to dependencies among parameters that must be imposed to create continuous intersections. Despite the complexity of the particle shapes, the particle mass, centroid and moment of inertia tensor can all be computed in closed form.

Practical implications

The particle can be implemented in any contact algorithm designed for ellipsoids with minor modifications to determine in which pair of octants the potential contact occurs.

Originality/value

The poly‐ellipsoid particle is a computational device to represent non‐spherical particles in DEM models.

Details

Engineering Computations, vol. 26 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 2000

A.M.C. Janse, P.E. Dijk and J.A.M. Kuipers

The volume of fluid (VOF) method is a numerical technique to track the developing free surfaces of liquids in motion. This method can, for example, be applied to compute the…

1041

Abstract

The volume of fluid (VOF) method is a numerical technique to track the developing free surfaces of liquids in motion. This method can, for example, be applied to compute the liquid flow patterns in a rotating cone reactor. For this application a spherical coordinate system is most suited. The novel derivation of the extended VOF algorithms for this class of applications is presented here. Some practical limitations of this method, that are inherent in the geometry of the described system, are discussed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000