Search results

1 – 10 of 991
Open Access
Article
Publication date: 18 April 2024

Changhai Tian and Shoushuai Zhang

The design goal for the tracking interval of high-speed railway trains in China is 3 min, but it is difficult to achieve, and it is widely believed that it is mainly limited by…

Abstract

Purpose

The design goal for the tracking interval of high-speed railway trains in China is 3 min, but it is difficult to achieve, and it is widely believed that it is mainly limited by the tracking interval of train arrivals. If the train arrival tracking interval can be compressed, it will be beneficial for China's high-speed railway to achieve a 3-min train tracking interval. The goal of this article is to study how to compress the train arrival tracking interval.

Design/methodology/approach

By simulating the process of dense train groups arriving at the station and stopping, the headway between train arrivals at the station was calculated, and the pattern of train arrival headway was obtained, changing the traditional understanding that the train arrival headway is considered the main factor limiting the headway of trains.

Findings

When the running speed of trains is high, the headway between trains is short, the length of the station approach throat area is considerable and frequent train arrivals at the station, the arrival headway for the first group or several groups of trains will exceed the headway, but the subsequent sets of trains will have a headway equal to the arrival headway. This convergence characteristic is obtained by appropriately increasing the running time.

Originality/value

According to this pattern, there is no need to overly emphasize the impact of train arrival headway on the headway. This plays an important role in compressing train headway and improving high-speed railway capacity.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 26 April 2024

Shifang Zhao and Shu Yu

In recent decades, emerging market multinational enterprises (EMNEs) have predominantly adopted a big step internationalization strategy to expand their business overseas. This…

Abstract

Purpose

In recent decades, emerging market multinational enterprises (EMNEs) have predominantly adopted a big step internationalization strategy to expand their business overseas. This study aims to examine the effect of big step internationalization on the speed of subsequent foreign direct investment (FDI) expansion for EMNEs. The authors also investigate the potential boundary conditions.

Design/methodology/approach

The authors use the random effects generalized least squares (GLS) regression following a hierarchical approach to analyze the panel data set conducted by a sample of publicly listed Chinese firms from 2001 to 2012.

Findings

The findings indicate that implementing big step internationalization in the initial stages accelerates the speed of subsequent FDI expansion. Notably, the authors find that this effect is more pronounced for firms that opt for acquisitions as the entry mode in their first big step internationalization and possess a board of directors with strong political connections to their home country’s government. In contrast, the board of director’s international experience negatively moderates this effect.

Practical implications

This study provides insights into our scholarly and practical understanding of EMNEs’ big step internationalization and subsequent FDI expansion speed, which offers important implications for firms’ decision-makers and policymakers.

Originality/value

This study extends the internationalization theory, broadens the international business literature on the consequences of big step internationalization and deepens the theoretical and practical understanding of foreign expansion strategies in EMNEs.

Details

Chinese Management Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-614X

Keywords

Article
Publication date: 27 March 2024

Yan Zhou and Chuanxu Wang

Disruptions at ports may destroy the planned ship schedules profoundly, which is an imperative operation problem that shipping companies need to overcome. This paper attempts to…

Abstract

Purpose

Disruptions at ports may destroy the planned ship schedules profoundly, which is an imperative operation problem that shipping companies need to overcome. This paper attempts to help shipping companies cope with port disruptions through recovery scheduling.

Design/methodology/approach

This paper studies the ship coping strategies for the port disruptions caused by severe weather. A novel mixed-integer nonlinear programming model is proposed to solve the ship schedule recovery problem (SSRP). A distributionally robust mean conditional value-at-risk (CVaR) optimization model was constructed to handle the SSRP with port disruption uncertainties, for which we derive tractable counterparts under the polyhedral ambiguity sets.

Findings

The results show that the size of ambiguity set, confidence level and risk-aversion parameter can significantly affect the optimal values, decision-makers should choose a reasonable parameter combination. Besides, sailing speed adjustment and handling rate adjustment are effective strategies in SSRP but may not be sufficient to recover the schedule; therefore, port skipping and swapping are necessary when multiple or longer disruptions occur at ports.

Originality/value

Since the port disruption is difficult to forecast, we attempt to take the uncertainties into account to achieve more meaningful results. To the best of our knowledge, there is barely a research study focusing on the uncertain port disruptions in the SSRP. Moreover, this is the first paper that applies distributionally robust optimization (DRO) to deal with uncertain port disruptions through the equivalent counterpart of DRO with polyhedral ambiguity set, in which a robust mean-CVaR optimization formulation is adopted as the objective function for a trade-off between the expected total costs and the risk.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 22 March 2024

Geming Zhang, Lin Yang and Wenxiang Jiang

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is…

Abstract

Purpose

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is based on P-wave earthquake early-warning and multiple ways of rapid treatment.

Design/methodology/approach

The paper describes the key technologies that are involved in the development of the system, such as P-wave identification and earthquake early-warning, multi-source seismic information fusion and earthquake emergency treatment technologies. The paper also presents the test results of the system, which show that it has complete functions and its major performance indicators meet the design requirements.

Findings

The study demonstrates that the high speed railways earthquake early-warning system serves as an important technical tool for high speed railways to cope with the threat of earthquake to the operation safety. The key technical indicators of the system have excellent performance: The first report time of the P-wave is less than three seconds. From the first arrival of P-wave to the beginning of train braking, the total delay of onboard emergency treatment is 3.63 seconds under 95% probability. The average total delay for power failures triggered by substations is 3.3 seconds.

Originality/value

The paper provides a valuable reference for the research and development of earthquake early-warning system for high speed railways in other countries and regions. It also contributes to the earthquake prevention and disaster reduction efforts.

Article
Publication date: 26 March 2024

Yuanwen Han, Jiang Shen, Xuwei Zhu, Bang An and Xueying Bao

This study aims to develop an interface management risk interaction modeling and analysis methodology applicable to complex systems in high-speed rail construction projects…

Abstract

Purpose

This study aims to develop an interface management risk interaction modeling and analysis methodology applicable to complex systems in high-speed rail construction projects, reveal the interaction mechanism of interface management risk and provide theoretical support for project managers to develop appropriate interface management risk response strategies.

Design/methodology/approach

This paper introduces the association rule mining technique to improve the complex network modeling method. Taking China as an example, based on the stakeholder perspective, the risk factors and significant accident types of interface management of high-speed rail construction projects are systematically identified, and a database is established. Then, the Apriori algorithm is used to mine and analyze the strong association rules among the factors in the database, construct the complex network, and analyze its topological characteristics to reveal the interaction mechanism of the interface management risk of high-speed rail construction projects.

Findings

The results show that the network is both scale-free and small-world, implying that construction accidents are not random events but rather the result of strong interactions between numerous interface management risks. Contractors, technical interfaces, mechanical equipment, and environmental factors are the primary direct causal factors of accidents, while owners and designers are essential indirect causal factors. The global importance of stakeholders such as owners, designers, and supervisors rises significantly after considering the indirect correlations between factors. This theoretically explains the need to consider the interactions between interface management risks.

Originality/value

The interaction mechanism between interface management risks is unclear, which is an essential factor influencing the decision of risk response measures. This study proposes a new methodology for analyzing interface management risk response strategies that incorporate quantitative analysis methods and considers the interaction of interface management risks.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 19 March 2024

Chun Tian, Gengwei Zhai, Mengling Wu, Jiajun Zhou and Yaojie Li

In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface, this study aims to analyze the…

Abstract

Purpose

In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface, this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.

Design/methodology/approach

Based on the PLS-160 wheel-rail adhesion simulation test rig, the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip. Through statistical analysis of multiple sets of experimental data, the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained, and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed. The study analyzes the utilization of traction/braking adhesion, as well as adhesion redundancy, for different medium under small creepage and large slip conditions. Based on these findings, relevant measures for the reasonable and optimized utilization of adhesion are derived.

Findings

When the third-body medium exists on the rail surface, the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance. Compared with the current adhesion control strategy of small creepage, adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization, thereby ensuring the traction/braking performance and operation safety of the train.

Originality/value

Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions, without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train. Therefore, there is a risk of traction overspeeding/braking skidding. This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy. Based on these findings, relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.

Article
Publication date: 18 March 2024

Amar Benkhaled, Amina Benkhedda, Braham Benaouda Zouaoui and Soheyb Ribouh

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However…

Abstract

Purpose

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However, the existing methods for fuel reduction often rely on complex experimental calculations and data extraction from embedded systems, making practical implementation challenging. To address this, this study aims to devise a simple and accessible approach using available information.

Design/methodology/approach

In this paper, a novel analytic method to estimate and optimize fuel consumption for aircraft equipped with jet engines is proposed, with a particular emphasis on speed and altitude parameters. The dynamic variations in weight caused by fuel consumption during flight are also accounted for. The derived fuel consumption equation was rigorously validated by applying it to the Boeing 737–700 and comparing the results against the fuel consumption reference tables provided in the Boeing manual. Remarkably, the equation yielded closely aligned outcomes across various altitudes studied. In the second part of this paper, a pioneering approach is introduced by leveraging the particle swarm optimization algorithm (PSO). This novel application of PSO allows us to explore the equation’s potential in finding the optimal altitude and speed for an actual flight from Algiers to Brussels.

Findings

The results demonstrate that using the main findings of this study, including the innovative equation and the application of PSO, significantly simplifies and expedites the process of determining the ideal parameters, showcasing the practical applicability of the approach.

Research limitations/implications

The suggested methodology stands out for its simplicity and practicality, particularly when compared to alternative approaches, owing to the ready availability of data for utilization. Nevertheless, its applicability is limited in scenarios where zero wind effects are a prevailing factor.

Originality/value

The research opens up new possibilities for fuel-efficient aviation, with a particular focus on the development of a unique fuel consumption equation and the pioneering use of the PSO algorithm for optimizing flight parameters. This study’s accessible approach can pave the way for more environmentally conscious and economical flight operations.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 13 February 2024

Jiajun Zhou, Chao Chen, Chun Tian, Gengwei Zhai and Hao Yu

To authenticate the existence and principles of the adhesion recovery phenomenon under water pollution conditions, an innovative circumferential rail–wheel adhesion test rig was…

Abstract

Purpose

To authenticate the existence and principles of the adhesion recovery phenomenon under water pollution conditions, an innovative circumferential rail–wheel adhesion test rig was used. The study conducted extensive tests on the adhesion characteristics under large sliding conditions.

Design/methodology/approach

Experiments were conducted to investigate the influence of speed, axle load and slip on adhesion recovery. Based on the experimental results, the adhesion recovery transition function was re-fitted.

Findings

The study reveals that the adhesion recovery phenomenon truly exists under water conditions. The adhesion coefficient shows an increasing trend with the growth of the slip ratio. Moreover, at the current speed and axle load levels, the adhesion recovery is directly proportional to the square of the slip ratio and inversely proportional to the axle load.

Originality/value

The phenomenon of adhesion recovery and the formulated equations in this study can serve as an experimental and theoretical foundation for the design of braking and anti-skid control algorithms for trains.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0379/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 18 April 2024

Yaxing Ren, Ren Li, Xiaoying Ru and Youquan Niu

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller…

Abstract

Purpose

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller range and shorter time. The developed active shock absorber will also improve the safety and comfort of passengers driving in ultra-high-speed elevators.

Design/methodology/approach

A six-degree of freedom dynamic model is established according to the position and condition of the car. Then the active shock absorber and disturbance compensation-based adaptive control scheme are designed and simulated in MATLAB/Simulink. The results are analysed and compared with the traditional shock absorber.

Findings

The results show that, compared with traditional spring-based passive damping systems, the designed active shock absorber can reduce vibration displacement by 60%, peak acceleration by 50% and oscillation time by 2/3 and is more robust to different spring stiffness, damping coefficient and load.

Originality/value

The developed active shock absorber and its control algorithm can significantly reduce vibration amplitude and converged time. It can also adjust the damping strength according to the actual load of the elevator car, which is more suitable for high-speed elevators.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 991