Search results

1 – 10 of over 5000
To view the access options for this content please click here
Article
Publication date: 30 March 2020

Joseph Awoamim Yacim and Douw Gert Brand Boshoff

The paper introduced the use of a hybrid system of neural networks support vector machines (NNSVMs) consisting of artificial neural networks (ANNs) and support vector…

Abstract

Purpose

The paper introduced the use of a hybrid system of neural networks support vector machines (NNSVMs) consisting of artificial neural networks (ANNs) and support vector machines (SVMs) to price single-family properties.

Design/methodology/approach

The mechanism of the hybrid system is such that its output is given by the SVMs which utilise the results of the ANNs as their input. The results are compared to other property pricing modelling techniques including the standalone ANNs, SVMs, geographically weighted regression (GWR), spatial error model (SEM), spatial lag model (SLM) and the ordinary least squares (OLS). The techniques were applied to a dataset of 3,225 properties sold during the period, January 2012 to May 2014 in Cape Town, South Africa.

Findings

The results demonstrate that the hybrid system performed better than ANNs, SVMs and the OLS. However, in comparison to the spatial models (GWR, SEM and SLM) the hybrid system performed abysmally under with SEM favoured as the best pricing technique.

Originality/value

The findings extend the debate in the body of knowledge that the results of the OLS can significantly be improved through the use of spatial models that correct bias estimates and vary prices across the different property locations. Additionally, utilising the result of the hybrid system is thus affected by the black-box nature of the ANNs and SVMs limiting its use to purposes of checks on estimates predicted by the regression-based models.

Details

Property Management, vol. 38 no. 2
Type: Research Article
ISSN: 0263-7472

Keywords

To view the access options for this content please click here
Article
Publication date: 4 December 2019

Michael James McCord, John McCord, Peadar Thomas Davis, Martin Haran and Paul Bidanset

Numerous geo-statistical methods have been developed to analyse the spatial dimension and composition of house prices. Despite these advances, spatial filtering remains an…

Abstract

Purpose

Numerous geo-statistical methods have been developed to analyse the spatial dimension and composition of house prices. Despite these advances, spatial filtering remains an under-researched approach within house price studies. This paper aims to examine the spatial distribution of house prices using an eigenvector spatial filtering (ESF) procedure, to analyse the local variation and spatial heterogeneity.

Design/methodology/approach

Using 2,664 sale transactions over the one year period Q3 2017 to Q3 2018, an eigenvector spatial filtering approach is applied to evaluate spatial patterns within the Belfast housing market. This method consists of using geographical coordinates to specify eigenvectors across geographic distance to determine a set of spatial filters. These convey spatial structures representative of different spatial scales and units. The filters are incorporated as predictors into regression analyses to alleviate spatial autocorrelation. This approach is intuitive, given that detection of autocorrelation in specific filters and within the regression residuals can be markers for exclusion or inclusion criteria.

Findings

The findings show both robust and effective estimator consistency and limited spatial dependency – culminating in accurately specified hedonic pricing models. The findings show that the spatial component alone explains 14.6 per cent of the variation in property value, whereas 77.6 per cent of the variation could be attributed to an interaction between the structural characteristics and the local market geography expressed by the filters. This methodological step reduced short-scale spatial dependency and residual autocorrelation resulting in increased model stability and reduced misspecification error.

Originality/value

Eigenvector-based spatial filtering is a less known but suitable statistical protocol that can be used to analyse house price patterns taking into account spatial autocorrelation at varying (different) spatial scales. This approach arguably provides a more insightful analysis of house prices by removing spatial autocorrelation both objectively and subjectively to produce reliable, yet understandable, regression models, which do not suffer from traditional challenges of serial dependence or spatial mis-specification. This approach offers property researchers and policymakers an intuitive but comprehensible approach for producing accurate price estimation models, which can be readily interpreted.

Details

International Journal of Housing Markets and Analysis, vol. 13 no. 5
Type: Research Article
ISSN: 1753-8270

Keywords

To view the access options for this content please click here
Book part
Publication date: 1 December 2016

Jacob Dearmon and Tony E. Smith

Statistical methods of spatial analysis are often successful at either prediction or explanation, but not necessarily both. In a recent paper, Dearmon and Smith (2016…

Abstract

Statistical methods of spatial analysis are often successful at either prediction or explanation, but not necessarily both. In a recent paper, Dearmon and Smith (2016) showed that by combining Gaussian Process Regression (GPR) with Bayesian Model Averaging (BMA), a modeling framework could be developed in which both needs are addressed. In particular, the smoothness properties of GPR together with the robustness of BMA allow local spatial analyses of individual variable effects that yield remarkably stable results. However, this GPR-BMA approach is not without its limitations. In particular, the standard (isotropic) covariance kernel of GPR treats all explanatory variables in a symmetric way that limits the analysis of their individual effects. Here we extend this approach by introducing a mixture of kernels (both isotropic and anisotropic) which allow different length scales for each variable. To do so in a computationally efficient manner, we also explore a number of Bayes-factor approximations that avoid the need for costly reversible-jump Monte Carlo methods.

To demonstrate the effectiveness of this Variable Length Scale (VLS) model in terms of both predictions and local marginal analyses, we employ selected simulations to compare VLS with Geographically Weighted Regression (GWR), which is currently the most popular method for such spatial modeling. In addition, we employ the classical Boston Housing data to compare VLS not only with GWR but also with other well-known spatial regression models that have been applied to this same data. Our main results are to show that VLS not only compares favorably with spatial regression at the aggregate level but is also far more accurate than GWR at the local level.

Details

Spatial Econometrics: Qualitative and Limited Dependent Variables
Type: Book
ISBN: 978-1-78560-986-2

Keywords

To view the access options for this content please click here
Book part
Publication date: 1 December 2016

Roman Liesenfeld, Jean-François Richard and Jan Vogler

We propose a generic algorithm for numerically accurate likelihood evaluation of a broad class of spatial models characterized by a high-dimensional latent Gaussian…

Abstract

We propose a generic algorithm for numerically accurate likelihood evaluation of a broad class of spatial models characterized by a high-dimensional latent Gaussian process and non-Gaussian response variables. The class of models under consideration includes specifications for discrete choices, event counts and limited-dependent variables (truncation, censoring, and sample selection) among others. Our algorithm relies upon a novel implementation of efficient importance sampling (EIS) specifically designed to exploit typical sparsity of high-dimensional spatial precision (or covariance) matrices. It is numerically very accurate and computationally feasible even for very high-dimensional latent processes. Thus, maximum likelihood (ML) estimation of high-dimensional non-Gaussian spatial models, hitherto considered to be computationally prohibitive, becomes feasible. We illustrate our approach with ML estimation of a spatial probit for US presidential voting decisions and spatial count data models (Poisson and Negbin) for firm location choices.

Details

Spatial Econometrics: Qualitative and Limited Dependent Variables
Type: Book
ISBN: 978-1-78560-986-2

Keywords

To view the access options for this content please click here
Article
Publication date: 13 April 2012

M. McCord, P.T. Davis, M. Haran, S. McGreal and D. McIlhatton

Tobler's law of geography states that things that are close to one another tend to be more alike than things that are far apart. In this regard, the spatial pattern of…

Abstract

Purpose

Tobler's law of geography states that things that are close to one another tend to be more alike than things that are far apart. In this regard, the spatial pattern of price distribution is defined by the arrangement of individual entities in space and the geographic relationships among them. The purpose of this paper is to provide emerging findings of research analysing the salient factors which impact on the sale price of residential properties using a spatial regression approach.

Design/methodology/approach

The research develops and formulates a geographically weighted regression (GWR) model to incorporate residential sales transactions within the Belfast Metropolitan Area over the course of 2010. Transaction data were sourced from the University of Ulster House Price Index survey (2010, Q1‐Q4). The GWR approach was then evaluated relative to a standard hedonic model to determine the spatial heterogeneity of residential property price within the Belfast Metropolitan Area.

Findings

This investigation finds that the GWR technique provides increased accuracy in predicting marginal price estimates, in comparison with traditional hedonic modelling, within the Belfast housing market.

Originality/value

This study is one of only a few investigations of spatial house price variation applying the GWR methodology within the confines of a UK housing market. In this respect it enhances applied based knowledge and understanding of geographically weighted regression.

Details

Journal of Financial Management of Property and Construction, vol. 17 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

To view the access options for this content please click here
Book part
Publication date: 30 December 2004

Thomas L. Marsh and Ron C. Mittelhammer

We formulate generalized maximum entropy estimators for the general linear model and the censored regression model when there is first order spatial autoregression in the…

Abstract

We formulate generalized maximum entropy estimators for the general linear model and the censored regression model when there is first order spatial autoregression in the dependent variable. Monte Carlo experiments are provided to compare the performance of spatial entropy estimators relative to classical estimators. Finally, the estimators are applied to an illustrative model allocating agricultural disaster payments.

Details

Spatial and Spatiotemporal Econometrics
Type: Book
ISBN: 978-0-76231-148-4

To view the access options for this content please click here
Book part
Publication date: 30 December 2004

James P. LeSage and R. Kelley Pace

For this discussion, assume there are n sample observations of the dependent variable y at unique locations. In spatial samples, often each observation is uniquely…

Abstract

For this discussion, assume there are n sample observations of the dependent variable y at unique locations. In spatial samples, often each observation is uniquely associated with a particular location or region, so that observations and regions are equivalent. Spatial dependence arises when an observation at one location, say y i is dependent on “neighboring” observations y j, y j∈ϒi. We use ϒi to denote the set of observations that are “neighboring” to observation i, where some metric is used to define the set of observations that are spatially connected to observation i. For general definitions of the sets ϒi,i=1,…,n, typically at least one observation exhibits simultaneous dependence, so that an observation y j, also depends on y i. That is, the set ϒj contains the observation y i, creating simultaneous dependence among observations. This situation constitutes a difference between time series analysis and spatial analysis. In time series, temporal dependence relations could be such that a “one-period-behind relation” exists, ruling out simultaneous dependence among observations. The time series one-observation-behind relation could arise if spatial observations were located along a line and the dependence of each observation were strictly on the observation located to the left. However, this is not in general true of spatial samples, requiring construction of estimation and inference methods that accommodate the more plausible case of simultaneous dependence among observations.

Details

Spatial and Spatiotemporal Econometrics
Type: Book
ISBN: 978-0-76231-148-4

To view the access options for this content please click here
Article
Publication date: 7 December 2020

Ti-Ching Peng

Population ageing is fast becoming a major social concern across the globe. This ageing trend unavoidably fuels elders’ demand for healthcare services. As the main users…

Abstract

Purpose

Population ageing is fast becoming a major social concern across the globe. This ageing trend unavoidably fuels elders’ demand for healthcare services. As the main users of health care service, whether the healthcare is geographically approachable in local areas is more imperative to senior residents with restricted mobility. This paper proposes to examine the effect of elders’ healthcare accessibility on property prices of Taipei Metropolis, Taiwan.

Design/methodology/approach

Luo and Qi’s (2009) enhanced two-step floating catchment area method – taking both healthcare demand and supply into account – was used to measure three types of healthcare services: “physician-to-elder ratio”, “hospital bed-to-elder ratio” and “ambulance-to-elder ratio”. Spatial quantile regression (SQR) model was then used to examine the spatial effect of healthcare accessibility on different property price ranges.

Findings

The “physician-to-elder ratio” and “hospital bed-to-elder ratio” demonstrated expected consistent positive effects across all quantiles of property prices (p < 0.01) in SQR, and its effects aggravated as the quantiles of property prices rose. The “ambulance-to-elder ratio” demonstrated a non-linear influence on property prices (i.e. a negative effect on lowest quantile prices but a positive on higher quantile prices) possibly due to the semi-obnoxious characteristic of the ambulance. That is, residents living in lower priced neighbourhoods may dislike ambulances’ annoying sound of sirens (i.e. ambulances’ disamenity), while residents living in higher valued neighbourhoods may on the contrary appreciate ambulances’ healthcare services (i.e. amenity).

Practical implications

These findings are expected to offer some insights for government’s policies in providing elders in their later years with good residential quality and easy access to healthcare resource.

Originality/value

This paper is one of the few studies that consider the capitalization of the spatial healthcare accessibility to elders into property prices. In this ageing trend across the globe, although all the accessibility to medical resources should be equally critical, the application of spatial quantile regression revealed residents’ inconsistent tendency against semi-obnoxious ambulances. It provides a different perspective in defining the importance of healthcare accessibility in neighbourhoods.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

To view the access options for this content please click here
Book part
Publication date: 1 December 2016

Raffaella Calabrese and Johan A. Elkink

The most used spatial regression models for binary-dependent variable consider a symmetric link function, such as the logistic or the probit models. When the dependent…

Abstract

The most used spatial regression models for binary-dependent variable consider a symmetric link function, such as the logistic or the probit models. When the dependent variable represents a rare event, a symmetric link function can underestimate the probability that the rare event occurs. Following Calabrese and Osmetti (2013), we suggest the quantile function of the generalized extreme value (GEV) distribution as link function in a spatial generalized linear model and we call this model the spatial GEV (SGEV) regression model. To estimate the parameters of such model, a modified version of the Gibbs sampling method of Wang and Dey (2010) is proposed. We analyze the performance of our model by Monte Carlo simulations and evaluate the prediction accuracy in empirical data on state failure.

Details

Spatial Econometrics: Qualitative and Limited Dependent Variables
Type: Book
ISBN: 978-1-78560-986-2

Keywords

To view the access options for this content please click here
Article
Publication date: 16 November 2018

Michael J. McCord, Sean MacIntyre, Paul Bidanset, Daniel Lo and Peadar Davis

Air quality, noise and proximity to urban infrastructure can arguably have an important impact on the quality of life. Environmental quality (the price of good health) has…

Abstract

Purpose

Air quality, noise and proximity to urban infrastructure can arguably have an important impact on the quality of life. Environmental quality (the price of good health) has become a central tenet for consumer choice in urban locales when deciding on a residential neighbourhood. Unlike the market for most tangible goods, the market for environmental quality does not yield an observable per unit price effect. As no explicit price exists for a unit of environmental quality, this paper aims to use the housing market to derive its implicit price and test whether these constituent elements of health and well-being are indeed capitalised into property prices and thus implicitly priced in the market place.

Design/methodology/approach

A considerable number of studies have used hedonic pricing models by incorporating spatial effects to assess the impact of air quality, noise and proximity to noise pollutants on property market pricing. This study presents a spatial analysis of air quality and noise pollution and their association with house prices, using 2,501 sale transactions for the period 2013. To assess the impact of the pollutants, three different spatial modelling approaches are used, namely, ordinary least squares using spatial dummies, a geographically weighted regression (GWR) and a spatial lag model (SLM).

Findings

The findings suggest that air quality pollutants have an adverse impact on house prices, which fluctuate across the urban area. The analysis suggests that the noise level does matter, although this varies significantly over the urban setting and varies by source.

Originality/value

Air quality and environmental noise pollution are important concerns for health and well-being. Noise impact seems to depend not only on the noise intensity to which dwellings are exposed but also on the nature of the noise source. This may suggest the presence of other externalities that arouse social aversion. This research presents an original study utilising advanced spatial modelling approaches. The research has value in further understanding the market impact of environmental factors and in providing findings to support local air zone management strategies, noise abatement and management strategies and is of value to the wider urban planning and public health disciplines.

Details

Journal of European Real Estate Research, vol. 11 no. 3
Type: Research Article
ISSN: 1753-9269

Keywords

1 – 10 of over 5000