Search results

11 – 20 of 853
Article
Publication date: 20 February 2020

Daniel Paul Thanaraj, Anand N. and Prince Arulraj

The purpose of this study is to investigate the effect of standard fire on the strength and microstructure properties of concrete with different strength grades.

Abstract

Purpose

The purpose of this study is to investigate the effect of standard fire on the strength and microstructure properties of concrete with different strength grades.

Design/methodology/approach

Different strength grades of concrete used for the investigation are M20, M30, M40 and M50. An electrical bogie hearth furnace was developed to simulate the International Standards Organization 834 standard fire curve.Concrete samples were subjected to high temperatures of 925, 1,029, 1,090 and 1,133°C for the duration of 1, 2, 3 and 4 h, respectively, as per standard fire curve. Compressive strength, tensile strength, thermal crack pattern and spalling of heated concrete specimens were evaluated by experimental investigation. Scanning electron microscopy and thermo-gravimetric analysis were performed to investigate the microstructure properties of heated concrete specimens.

Findings

Test results indicated reduction in the strength and changes in the microstructure properties of concrete exposed to elevated temperature. The degree of weight and the strength loss were found to be higher for concrete with higher grades. An empirical relation is proposed to determine the residual strength of concrete with different strength grade using regression analysis.

Social implications

Results of this research will be useful for the design engineers to understand the behavior of concrete exposed to elevated temperature as per standard fire.

Originality/value

When concrete is exposed to elevated temperature, its internal microstructure changes, thereby strength and durability of concrete deteriorates. The performance of concrete with different strength grade exposed to standard fire is well understood. This research’s findings will be useful for the designers to understand more about fire resistance of concrete. A simple relationship is proposed to determine the residual strength of concrete exposed to various durations of heating.

Details

Journal of Structural Fire Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 19 August 2014

John McKinney and Faris Ali

This paper presents the results from two supervised Artificial Neural Networks (ANN) developed for the spalling classification and failure prediction of high strength concrete…

Abstract

This paper presents the results from two supervised Artificial Neural Networks (ANN) developed for the spalling classification and failure prediction of high strength concrete columns (HSCC) subjected to fire. The experimental test data used for the ANN are based on the HSCC tests undertaken at the Fire Research Laboratories at the University of Ulster. 80% of the chosen experimental test data was used to train the network with the remaining 20% used for testing. In the spalling classification example the key ANN input parameters were; furnace temperature, restraint, loading level, force, spalling degree, failure time and spalling type. This was also the case for the failure prediction example except for spalling type. The networks were trained using the resilient propagation algorithm. A 6-10-3 and 5-10-1 ANN architecture gave the best results for the classification and failure prediction times respectively. The results demonstrate that HSCC can be assessed using ANN.

Details

Journal of Structural Fire Engineering, vol. 5 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 2 February 2021

Lukman E. Mansuri and D.A. Patel

Heritage is the latent part of a sustainable built environment. Conservation and preservation of heritage is one of the United Nations' (UN) sustainable development goals. Many…

1171

Abstract

Purpose

Heritage is the latent part of a sustainable built environment. Conservation and preservation of heritage is one of the United Nations' (UN) sustainable development goals. Many social and natural factors seriously threaten heritage structures by deteriorating and damaging the original. Therefore, regular visual inspection of heritage structures is necessary for their conservation and preservation. Conventional inspection practice relies on manual inspection, which takes more time and human resources. The inspection system seeks an innovative approach that should be cheaper, faster, safer and less prone to human error than manual inspection. Therefore, this study aims to develop an automatic system of visual inspection for the built heritage.

Design/methodology/approach

The artificial intelligence-based automatic defect detection system is developed using the faster R-CNN (faster region-based convolutional neural network) model of object detection to build an automatic visual inspection system. From the English and Dutch cemeteries of Surat (India), images of heritage structures were captured by digital camera to prepare the image data set. This image data set was used for training, validation and testing to develop the automatic defect detection model. While validating this model, its optimum detection accuracy is recorded as 91.58% to detect three types of defects: “spalling,” “exposed bricks” and “cracks.”

Findings

This study develops the model of automatic web-based visual inspection systems for the heritage structures using the faster R-CNN. Then it demonstrates detection of defects of spalling, exposed bricks and cracks existing in the heritage structures. Comparison of conventional (manual) and developed automatic inspection systems reveals that the developed automatic system requires less time and staff. Therefore, the routine inspection can be faster, cheaper, safer and more accurate than the conventional inspection method.

Practical implications

The study presented here can improve inspecting the built heritages by reducing inspection time and cost, eliminating chances of human errors and accidents and having accurate and consistent information. This study attempts to ensure the sustainability of the built heritage.

Originality/value

For ensuring the sustainability of built heritage, this study presents the artificial intelligence-based methodology for the development of an automatic visual inspection system. The automatic web-based visual inspection system for the built heritage has not been reported in previous studies so far.

Details

Smart and Sustainable Built Environment, vol. 11 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 19 August 2014

Mitsuo Ozawa, Zhou Bo, Yuichi Uchida and Hiroaki Morimoto

This paper investigates the relationship between spalling behavior and weight loss for ultra-high-strength fiber-reinforced concrete (UFC) containing different types short fibers…

Abstract

This paper investigates the relationship between spalling behavior and weight loss for ultra-high-strength fiber-reinforced concrete (UFC) containing different types short fibers (jute, PP, WSPVA) in high-temperature environments at 400, 600 and 800 °C. The explosive spalling that occurred under these conditions caused severe damage to the control specimen but only slight damage to the specimen with jute fiber. It was therefore inferred that adding 0.19% by volume of natural jute fibers (length: 12 mm) to UFC is effective in the prevention of spalling-related damage.

Details

Journal of Structural Fire Engineering, vol. 5 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 19 August 2014

Toru Tanibe, Mitsuo Ozawa, Ryota Kamata and Keitetsu Rokugo

This paper reports on an experimental study regarding the behavior of restrained high-strength concrete in response to the type of extreme heating associated with fire. The study…

Abstract

This paper reports on an experimental study regarding the behavior of restrained high-strength concrete in response to the type of extreme heating associated with fire. The study was intended to support estimation of thermal stress from the strain in a restraining steel ring and vapor pressure in restrained concrete under the conditions of a RABT 30 rapid heating curve. The size of the specimens was φ300 X 100 mm, and the results showed that explosive spalling occurred between 4 and 10 minutes in terms of heating time. It was also observed that the thermal stress was greater than the vapor pressure value of 0.1 MPa at a point 10 mm from the heated surface at 5 minutes. The maximum spalling depth was about 61 mm. It was inferred that spalling behavior caused by thermal stress may become predominant under restrained conditions.

Details

Journal of Structural Fire Engineering, vol. 5 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 21 September 2021

Hemanth Kumar Chinthapalli and Anil Agarwal

Earthquake tremors not only increase the chances of fire ignition but also hinder the fire-fighting efforts due to the damage to the lifelines of a city. Most of the international…

Abstract

Purpose

Earthquake tremors not only increase the chances of fire ignition but also hinder the fire-fighting efforts due to the damage to the lifelines of a city. Most of the international codes have independent recommendations for structural safety against earthquake and fire. However, the possibility of a multi-hazard event, such as fire following an earthquake is seldom addressed.

Design/methodology/approach

This paper presents an experimental study of Reinforced Concrete (RC) columns in post-earthquake fire (PEF) conditions. An experimental approach is proposed that allows the testing of a column instead of a full structural frame. This approach allows us to control the loading and boundary conditions individually and facilitates the testing under a variety of these conditions. Also, it allows the structure to be tested until failure. The role of parameters, such as earthquake intensity, axial load ratio and the ductile detailing of the column on the earthquake damage and subsequently the fire performance of the structure, is studied in this research. Six RC column specimens are tested under a sequence of quasi-static earthquake loading, followed by combined fire and axial compression loading conditions.

Findings

The experiment results indicate that ductile detailed columns subjected to 4% or less lateral drift did not lose significant load-carrying capacity in fire conditions. A lateral drift of 6% caused significant damage to the columns and reduced the load-carrying capacity in fire conditions. The level of the axial load acting on the column at the time of earthquake loading was found to have a very significant effect on the extent of damage and reduction in column load capacity in fire conditions. The columns that were not detailed for a ductile behavior observed a more significant reduction in axial load carrying capacity in fire conditions.

Research limitations/implications

This study is limited to columns of 230 mm size due to the limitations of the test setup. The applicability of these findings to larger column sections needs to be verified by developing a numerical analysis methodology and simulating other post-earthquake-fire tests available in the literature.

Originality/value

The experimental procedure proposed in this paper offers an alternative to the testing of a complete structural frame system for PEF behavior. In addition to the ease of conducting the tests, the procedure also allows much better control over the heating, structural loading and boundary conditions.

Details

Journal of Structural Fire Engineering, vol. 13 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 November 2002

Bernhard A. Schrefler, Carmelo E. Majorana, Gabriel A. Khoury and Dariusz Gawin

This paper presents the physical, mathematical and numerical models forming the main structure of the numerical analysis of the thermal, hydral and mechanical behaviour of normal…

2501

Abstract

This paper presents the physical, mathematical and numerical models forming the main structure of the numerical analysis of the thermal, hydral and mechanical behaviour of normal, high‐performance concrete (HPC) and ultra‐high performance concrete (UHPC) structures subjected to heating. A fully coupled non‐linear formulation is designed to predict the behaviour, and potential for spalling, of heated concrete structures for fire and nuclear reactor applications. The physical model is described in more detail, with emphasis being placed upon the real processes occurring in concrete during heating based on tests carried out in several major laboratories around Europe as part of the wider high temperature concrete (HITECO) research programme. A number of experimental and modelling advances are presented in this paper. The stress‐strain behaviour of concrete in direct tension, determined experimentally, is input into the model. The hitherto unknown micro‐structural, hydral and mechanical behaviour of HPC/UHPC were determined experimentally and the information is also built into the model. Two examples of computer simulations concerning experimental validation of the model, i.e. temperature and gas pressure development in a radiatively heated HPC wall and hydro‐thermal and mechanical (damage) performance of a square HPC column during fire, are presented and discussed in the context of full scale fire tests done within the HITECO research programme.

Details

Engineering Computations, vol. 19 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 December 2023

Balamurali Kanagaraj, N. Anand, Johnson Alengaram and Diana Andrushia

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of…

Abstract

Purpose

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of traditional river sand. The aim is to create eco-friendly concrete that mitigates the depletion of conventional river sand and conserves natural resources. Additionally, the study seeks to explore how the moisture content of filler materials affects the performance of GPC.

Design/methodology/approach

SSW obtained from the sodium silicate industry was used as filler material in the production of GPC, which was cured at ambient temperature. Instead of the typical conventional river sand, SSW was substituted at 25 and 50% of its weight. Three distinct moisture conditions were applied to both river sand and SSW. These conditions were classified as oven dry (OD), air dry (AD) and saturated surface dry (SSD).

Findings

As the proportion of SSW increased, there was a decrease in the slump of the GPC. The setting time was significantly affected by the higher percentage of SSW. The presence of angular-shaped SSW particles notably improved the compressive strength of GPC when replacing a portion of the river sand with SSW. When exposed to elevated temperatures, the performance of the GPC with SSW exhibited similar behavior to that of the mix containing conventional river sand, but it demonstrated a lower residual strength following exposure to elevated temperatures.

Originality/value

Exploring the possible utilization of SSW as a substitute for river sand in GPC, and its effects on the performance of the proposed mix. Analyzing, how varying moisture conditions affect the performance of GPC containing SSW. Evaluating the response of the GPC with SSW exposed to elevated temperatures in contrast to conventional river sand.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 24 May 2023

Vijaya Prasad Burle, Tattukolla Kiran, N. Anand, Diana Andrushia and Khalifa Al-Jabri

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete…

Abstract

Purpose

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete (FGC) was developed with 8 and 10 molarities (M). At elevated temperatures, concrete experiences deterioration of its mechanical properties which is in some cases associated with spalling, leading to the building collapse.

Design/methodology/approach

In this study, six geopolymer-based mix proportions are prepared with crimped steel fibre (SF), polypropylene fibre (PF), basalt fibre (BF), a hybrid mixture consisting of (SF + PF), a hybrid mixture with (SF + BF), and a reference specimen (without fibres). After temperature exposure, ultrasonic pulse velocity, physical characteristics of damaged concrete, loss of compressive strength (CS), split tensile strength (TS), and flexural strength (FS) of concrete are assessed. A polynomial relationship is developed between residual strength properties of concrete, and it showed a good agreement.

Findings

The test results concluded that concrete with BF showed a lower loss in CS after 925 °C (i.e. 60 min of heating) temperature exposure. In the case of TS, and FS, the concrete with SF had lesser loss in strength. After 986 °C and 1029 °C exposure, concrete with the hybrid combination (SF + BF) showed lower strength deterioration in CS, TS, and FS as compared to concrete with PF and SF + PF. The rate of reduction in strength is similar to that of GC-BF in CS, GC-SF in TS and FS.

Originality/value

Performance evaluation under fire exposure is necessary for FGC. In this study, we provided the mechanical behaviour and physical properties of SF, PF, and BF-based geopolymer concrete exposed to high temperatures, which were evaluated according to ISO standards. In addition, micro-structural behaviour and linear polynomials are observed.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 10 August 2015

Luciano Castro Lara, Henara Costa and José Daniel Biasoli de Mello

This paper aims to analyse the influence of the thickness of different layers [diamond-like-carbon (DLC) and chromium nitride (CrN)] on the sliding wear behaviour of a…

Abstract

Purpose

This paper aims to analyse the influence of the thickness of different layers [diamond-like-carbon (DLC) and chromium nitride (CrN)] on the sliding wear behaviour of a multifunctional coating on AISI 1020 substrates. When small and cheap components need to be manufactured in large scale, they are often produced using soft metals, such as unhardened low carbon steels and pure iron.

Design/methodology/approach

Two families, one with thicker films and the other with thinner films, were deposited onto a soft carbon steel substrate by plasma-enhanced chemical vapour deposition (PECVD). Reciprocating linear tests with incremental loading assessed the durability of the coatings. In addition, friction coefficient and wear rates of both specimens and counterbodies were measured at a constant load.

Findings

Thinner layers presented lower sliding wear rates (four-five times lower) for both specimens and counterbodies, less spalling and protective tribolayers on the wear tracks.

Originality/value

Although multilayered CrN–DLC coatings on relatively hard substrates such as HSS and cemented carbide tools are already a proven technology, much less is known about its deposition on a much softer substrate such as low carbon steel. In previous works, we have analysed the influence of layer thickness on hardness and scratch resistance of the same coatings. This paper presents results for their performance under wear sliding conditions using an original approach (three-dimensional triboscopic maps) for two distinct configurations (increasing load and constant load).

Details

Industrial Lubrication and Tribology, vol. 67 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

11 – 20 of 853