Search results

1 – 10 of 474
Article
Publication date: 10 July 2021

Walter Timo de Vries and Urs Hugentobler

In light of the discussions on outer space property management, this conceptual review paper aims to discuss and evaluate if, when and under which conditions certain land…

Abstract

Purpose

In light of the discussions on outer space property management, this conceptual review paper aims to discuss and evaluate if, when and under which conditions certain land management and property right frameworks can apply to allocate and/or restrict property rights in outer space.

Design/methodology/approach

This paper applies a pragmatic review approach which seeks to better understand if and how the basic tenets of the land management frameworks could better shape and revise the challenges in outer space regulations.

Findings

Despite the fact that regulatory guidelines on outer space rights are existing, the analysis shows that these lack a number of practical tools and measures aiming at intervening if stakeholders do not follow the rules. With the use of land management frameworks, it is possible to derive policy options for making the outer space management more practical and action-oriented, in particular for the removal of space debris. These include amongst others more attention for formulating global public restrictions in outer space, incorporating regulatory guidelines for accessing open space regimes, addressing responsiveness and robustness in adherence and compliance to regulations

Research limitations/implications

Given the conceptual and discursive character of the paper, there are no specific empirical data, yet several recommendations for further research include expanding the boundary work between the land management and regulatory outer space domain.

Practical implications

The insights derived from land management and real estate related property theories could potentially provide new starting points for (re)formulating the regulatory framework for outer space property discourses.

Social implications

Interpreting the outer space regulations from known and practiced land management perspective helps to bridge the policy–society knowledge and necessity gap on outer space activities.

Originality/value

The specific land management perspective and discursive analysis on outer space debris provide new options for devising and extending regulatory guidelines for assigning responsibilities on outer space debris and debris rights, restrictions and responsibilities.

Details

Journal of Property, Planning and Environmental Law, vol. 13 no. 2
Type: Research Article
ISSN: 2514-9407

Keywords

Article
Publication date: 11 January 2022

Weiliang Zhu, Zhaojun Pang, Jiyue Si and Zhonghua Du

This paper aims to study the encounter issues of the Tethered-Space Net Robot System (TSNRS) with non-target objects on orbit during the maneuver, including the collision issues…

Abstract

Purpose

This paper aims to study the encounter issues of the Tethered-Space Net Robot System (TSNRS) with non-target objects on orbit during the maneuver, including the collision issues with small space debris and the obstacle avoidance from large obstacles.

Design/methodology/approach

For the collision of TSNRS with small debris, the available collision model of the tethered net and its limitation is discussed, and the collision detection method is improved. Then the dynamic response of TSNRS is studied and a closed-loop controller is designed. For the obstacle avoidance, the variable enveloping circle of the TSNRS has coupled with the artificial potential field (APF) method. In addition, the APF is improved with a local trajectory correction method to avoid the overbending segment of the trajectory.

Findings

The collision model coupled with the improved collision detection method solves the detection failure and speeds up calculation efficiency by 12 times. Collisions of TSNRS with small debris make the local thread stretch and deforms finally making the net a mess. The boundary of the disturbance is obtained by a series of collision tests, and the designed controller not only achieved the tracking control of the TSNRS but also suppressed the disturbance of the net.

Practical implications

This paper fills the gap in the research on the collision of the tethered net with small debris and makes the collision model more general and efficient by improving the collision detection method. And the coupled obstacle avoidance method makes the process of obstacle avoidance safer and smoother.

Originality/value

The work in this paper provides a reference for the on-orbit application of TSNRS in the active space debris removal mission.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 September 2023

Kaushal Jani

This article takes into account object identification, enhanced visual feature optimization, cost effectiveness and speed selection in response to terrain conditions. Neither…

19

Abstract

Purpose

This article takes into account object identification, enhanced visual feature optimization, cost effectiveness and speed selection in response to terrain conditions. Neither supervised machine learning nor manual engineering are used in this work. Instead, the OTV educates itself without instruction from humans or labeling. Beyond its link to stopping distance and lateral mobility, choosing the right speed is crucial. One of the biggest problems with autonomous operations is accurate perception. Obstacle avoidance is typically the focus of perceptive technology. The vehicle's shock is nonetheless controlled by the terrain's roughness at high speeds. The precision needed to recognize difficult terrain is far higher than the accuracy needed to avoid obstacles.

Design/methodology/approach

Robots that can drive unattended in an unfamiliar environment should be used for the Orbital Transfer Vehicle (OTV) for the clearance of space debris. In recent years, OTV research has attracted more attention and revealed several insights for robot systems in various applications. Improvements to advanced assistance systems like lane departure warning and intelligent speed adaptation systems are eagerly sought after by the industry, particularly space enterprises. OTV serves as a research basis for advancements in machine learning, computer vision, sensor data fusion, path planning, decision making and intelligent autonomous behavior from a computer science perspective. In the framework of autonomous OTV, this study offers a few perceptual technologies for autonomous driving in this study.

Findings

One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV.

Originality/value

One of the most important steps in the functioning of autonomous OTVs and aid systems is the recognition of barriers, such as other satellites. Using sensors to perceive its surroundings, an autonomous car decides how to operate on its own. Driver-assistance systems like adaptive cruise control and stop-and-go must be able to distinguish between stationary and moving objects surrounding the OTV.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 19 October 2018

Karol Seweryn and Jurek Z. Sasiadek

This paper aims to present a novel method for identification and classification of rotational motion for uncontrolled satellites. These processes are shown in context of close…

Abstract

Purpose

This paper aims to present a novel method for identification and classification of rotational motion for uncontrolled satellites. These processes are shown in context of close proximity orbital operations. In particular, it includes a manipulator arm mounted on chaser satellite and used to capture target satellites. In such situations, a precise extrapolation of the target’s docking port position is needed to determine the manipulator arm motion. The outcome of this analysis might be used in future debris removal or servicing space missions.

Design/methodology/approach

Nonlinear, and in some special cases, chaotic nature of satellite rotational motion was considered. Four parameters were defined: range of motion toward docking port, dominant frequencies, fractal dimension of the motion and its time dependencies.

Findings

The qualitative analysis was performed for presented cases of spacecraft rotational motion and for each case the respective parameters were calculated. The analysis shows that it is possible to detect the type of rotational motion.

Originality/value

A novel procedure allowing to estimate the type of satellite rotational motion based on fractal approach was proposed.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Expert briefing
Publication date: 22 February 2023

A fourth, South Korea, may soon join them. The way these countries compete or cooperate in space -- with each other and with extra-regional actors, especially the United States -…

Details

DOI: 10.1108/OXAN-DB276218

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 13 November 2018

Hongshi Lu, Li Aijun, Wang Changqing and Zabolotnov Michaelovitch Yuriy

This paper aims to present the impact analysis of payload rendezvous with tethered satellite system and the design of an adaptive sliding mode controller which can deal with mass…

Abstract

Purpose

This paper aims to present the impact analysis of payload rendezvous with tethered satellite system and the design of an adaptive sliding mode controller which can deal with mass parameter uncertainty of targeted payload, so that the proposed cislunar transportation scheme with spinning tether system could be extended to a wider and more practical range.

Design/methodology/approach

In this work, dynamical model is first derived based on Langrangian equations to describe the motion of a spinning tether system in an arbitrary Keplerian orbit, which takes the mass of spacecraft, tether and payload into account. Orbital design and optimal open-loop control for the payload tossed by the spinning tether system are then presented. The real payload rendezvous impact around docking point is also analyzed. Based on reference acceleration trajectory given by optimal theories, a sliding mode controller with saturation functions is designed in the close-loop control of payload tossing stage under initial disturbance caused by actual rendezvous error. To alleviate the influence of inaccurate/unknown payload mass parameters, the adaptive law is designed and integrated into sliding mode controller. Finally, the performance of the proposed controller is evaluated using simulations. Simulation results validate that proposed controller is found effective in driving the spinning tether system to carry payload into desired cislunar transfer orbit and in dealing with payload mass parameter uncertainty in a relatively large range.

Findings

The results show that unideal rendezvous manoeuvres have significant impact on in-plane motion of spinning tether system, and the proposed adaptive sliding mode controller with saturation functions not only guarantees the stability but also provides good performance and robustness against the parameter and unstructured uncertainties.

Originality/value

This work addresses the analysis of actual impact on spinning tether system motion when payload is docking with system within tolerated docking window, rather than at the particular ideal docking point, and the robust tracking control of deep-space payload tossing missions with the spinning tether system using the adaptive sliding mode controller dealing with parameter uncertainties. This combination has not been proposed before for tracking control of multivariable spinning tether systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Abstract

Details

The Spatial Grasp Model
Type: Book
ISBN: 978-1-80455-574-3

Abstract

Details

The Spatial Grasp Model
Type: Book
ISBN: 978-1-80455-574-3

Book part
Publication date: 30 January 2023

Peter Simon Sapaty

Abstract

Details

The Spatial Grasp Model
Type: Book
ISBN: 978-1-80455-574-3

Abstract

Details

The Spatial Grasp Model
Type: Book
ISBN: 978-1-80455-574-3

1 – 10 of 474