Search results

1 – 10 of 25
Content available
Article
Publication date: 20 March 2009

90

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 2
Type: Research Article
ISSN: 0003-5599

Open Access
Book part
Publication date: 4 May 2018

Vera Viena, Elvitriana, Muhammad Nizar, Sari Wardani and Suhendrayatna

Purpose – In this research, we have prepared activated carbon (AC) from the waste of banana peels (Musa acuminate L.) using potassium hydroxide (KOH) for carbon monoxide (CO…

Abstract

Purpose – In this research, we have prepared activated carbon (AC) from the waste of banana peels (Musa acuminate L.) using potassium hydroxide (KOH) for carbon monoxide (CO) adsorption from motorcycle gas emission.

Design/Methodology/Approach – The activation was conducted using a chemical activator (KOH) at various concentrations of 1, 2, and 3 N for 1, 2, and 3 h, respectively. Characteristics of banana peels AC (BPAC) produced were analyzed using the Fourier-transform infra-red spectroscopy and scanning electron microscopy.

Findings – Results showed that KOH concentration and activation time strongly affected the CO adsorption and opening of the AC surface pore. There was an increase in the CO sorption when the KOH concentration was increased up to 3 N concentration. The highest CO adsorption from the emission occurred at 70.95% under KOH concentration of 3 N during the 3-h preparation.

Research Limitations/Implications – BPAC has been used as an adsorbent for only CO from motorcycle gas emission but not as an adsorbent for HC, NO, NOx, or H2S.

Practical Implications – BPAC can be used as the potential adsorbent for the removal of CO from motorcycle gas emission, and it is an environmental friendly, low cost, and easy to make adsorbent.

Originality/Value – In this study, the AC is made from biomass and is used in wastewater treatment, but limited studies are found on the removal of CO from motorcycle gas emission.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Content available
Article
Publication date: 12 February 2018

Karima Derdour, Chafia Bouchelta, Amina Khorief Naser-Eddine, Mohamed Salah Medjram and Pierre Magri

The purpose of this paper is to focus on the removal of hexavalent chromium [Cr(VI)] from wastewater by using activated carbon-supported Fe catalysts derived from walnut shell…

6766

Abstract

Purpose

The purpose of this paper is to focus on the removal of hexavalent chromium [Cr(VI)] from wastewater by using activated carbon-supported Fe catalysts derived from walnut shell prepared using a wetness impregnation process. The different conditions of preparation such as impregnation rate and calcination conditions (temperature and time) were optimized to determine their effects on the catalyst’s characteristics.

Design/methodology/approach

The catalyst samples were characterized using thermogravimetric analysis, scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption of Cr(VI) by using using activated carbon supported Fe catalysts derived from walnut shell as an adsorbent and catalyst was investigated under different adsorption conditions. The parameters studied were contact time, adsorbent dose, solution pH and initial concentrations.

Findings

Results showed that higher adsorption capacity and rapid kinetics were obtained when the activated walnut shell was impregnated with Fe at 5 per cent and calcined under N2 flow at 400°C for 2 h. The adsorption isotherms data were analyzed with Langmuir and Freundlich models. The better fit is obtained with the Langmuir model with a maximum adsorption capacity of 29.67 mg/g for Cr(VI) on Fe5-AWS at pH 2.0.

Originality/value

A comparison of two kinetic models shows that the adsorption isotherms system is better described by the pseudo-first-order kinetic model.

Details

World Journal of Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Article
Publication date: 1 February 2001

27

Abstract

Details

Pigment & Resin Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0369-9420

Content available
Article
Publication date: 22 May 2009

71

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 3
Type: Research Article
ISSN: 0003-5599

Content available
Article
Publication date: 1 August 2000

143

Abstract

Details

Pigment & Resin Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0369-9420

Content available
Article
Publication date: 1 October 2000

23

Abstract

Details

Pigment & Resin Technology, vol. 29 no. 5
Type: Research Article
ISSN: 0369-9420

Content available
Article
Publication date: 1 December 2000

23

Abstract

Details

Pigment & Resin Technology, vol. 29 no. 6
Type: Research Article
ISSN: 0369-9420

Abstract

Purpose

In addition to agriculture, energy production, and industries, potable water plays a significant role in many fields, further increasing the demand for potable water. Purification and desalination play a major role in meeting the need for clean drinking water. Clean water is necessary in different areas, such as agriculture, industry, food industries, energy generation and in everyday chores.

Design/methodology/approach

The authors have used the different search engines like Google Scholar, Web of Science, Scopus and PubMed to find the relevant articles and prepared this mini review.

Findings

The various stages of water purification include coagulation and flocculation, coagulation, sedimentation and disinfection, which have been discussed in this mini review. Using nanotechnology in wastewater purification plants can minimize the cost of wastewater treatment plants by combining several conventional procedures into a single package.

Social implications

In society, we need to avail clean water to meet our everyday, industrial and agricultural needs. Purification of grey water can meet the clean water scarcity and make the environment sustainable.

Originality/value

This mini review will encourage the researchers to find out ways in water remediation to meet the need of pure water in our planet and maintain sustainability.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Book part
Publication date: 4 May 2018

Intan Lestari

Purpose – The purpose of this paper to immobilization provides biosorbent particle with density and mechanichal strength, immobilization can save the cost of separating from…

Abstract

Purpose – The purpose of this paper to immobilization provides biosorbent particle with density and mechanichal strength, immobilization can save the cost of separating from biomass, can be regeneration and to increase adsorption capacity for metal ions.

Design/Methodology/Approach – The parameters affecting the adsorption, such as initial metal ion concentration, pH, contact time, and temperature, were studied. The analysis of biosorbent functional group was carried out by Fourier Transform Infrared Spectroscopy, SEM-EDX, for elemental analysis.

Findings – Optimum pH condition for biosorption Cd(II) was pH 5, contact time was 45 min, and initial concentration was 250 mg/L. Biosorbent analysis was characterized using SEM-EDX and FTIR analysis. Kinetics adsorption was studied and analyzed in terms of the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. The result showed that the biosorption for Cd(II) ion followed the pseudo-second-order kinetic model. Biosorption data of Cd(II) ion at 300°K, 308°K, and 318°K was analyzed with Temkin, Langmuir, and Freundlich isotherms. Biosorption of Cd(II) by durian seed immobilization in alginate according to the Langmuir isotherm equation provided a coefficient correlation of r2 = 0.939 and maximum capacity biosorption of 25.05 mg/g.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

1 – 10 of 25