Search results

1 – 10 of 372
Article
Publication date: 18 April 2020

Maria Laura Frigotto and Pamela Palmi

This paper aims to contribute to the understanding of novelty emergence in the context of an “off-line” open innovation system. Several contributions address novelty generation…

Abstract

Purpose

This paper aims to contribute to the understanding of novelty emergence in the context of an “off-line” open innovation system. Several contributions address novelty generation implying open innovation that is typically mediated by IT systems, while fewer address open innovation that takes place off-line, through new forms of collaboration happening in the so-called “physical spaces” and in widespread creativity contexts involving whole cities and territories. This research aims to clarify what the critical elements for novelty generation are, and how and why they interact in producing novelty.

Design/methodology/approach

This paper presents the case study of the Blackshape, a high-tech start-up that has become the Italian symbol of a new bottom-up economy that is grounded on high-education, a mix of territorial competencies and young initiative, and produces the development or growth of territories experiencing present or foreseen economic retardation for various reasons. This is a case in which novelty is emergent and takes place through exaptation. The case is used to elaborate an inductive understanding of the process of novelty generation through exaptation and follows a “conceptual composition” format (Berends and Deken, 2019).

Findings

This paper shows that initiatives building widespread creativity on the territory play a prominent role for emergent novelty generation, as they provide the context that sustains the efforts to keep on trying of entrepreneurs, welcomes unforeseen interaction and keeps interesting people on the territory that can be involved in random encounters. This paper adds that crucial contributions for the definition of the innovative project come from contributors that are expected to provide suggestions in other areas. Such prominent contributors are engaged in a sense “by mistake”, and here the randomness perceived by the actors experiencing it, because they are perceived to be able to provide some contributions, while they provide others that are more important to the project. This paper argues that such “perceived randomness” sustains a mechanism of selection of novelty generation partners that allows to go beyond the ability of actors themselves to design and foresee other actors’ contribution into the project. Finally, two other elements play a role: how the project is narrated, as well as, how the entrepreneurial team communicates their entrepreneurial competence for the project.

Research limitations/implications

This theoretical understanding builds on only one case study; further research might validate the critical role of our understanding of novelty generation elements and help develop their dynamics further.

Practical implications

Many elements in our understanding of novelty generation have typically been understood as resulting from luck and randomness, leaving, therefore, very little hope to actors’ interest in supporting them. This paper claims that such elements and such dynamics can be sustained and novelty generation can indirectly be supported, for instance, by suggesting a high openness and sharing of one’s own project even to accidentally encountered actors, as one’s own ability to foresee how they might contribute to the project is very poor.

Originality/value

This paper provides a tentative understanding of the elements and dynamics of novelty generation through exaptation building on theoretical elaboration that is inductively triggered and stimulated by empirical evidence.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 29 August 2023

Chigoziri N. Njoku, Temple Uzoma Maduoma, Wilfred Emori, Rita Emmanuel Odey, Beshel M. Unimke, Emmanuel Yakubu, Cyril C. Anorondu, Daniel I. Udunwa, Onyinyechi C. Njoku and Kechinyere B. Oyoh

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to…

Abstract

Purpose

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to protect metals from deterioration in corrosive environments. Moreover, the toxic nature, non-biodegradability and price of most conventional corrosion inhibitors have encouraged the application of greener and more sustainable options, with natural and synthetic drugs being major actors. Hence, this paper aims to stress the capability of natural and synthetic drugs as manageable and sustainable, environmentally friendly solutions to the problem of metal corrosion.

Design/methodology/approach

In this review, the recent developments in the use of natural and synthetic drugs as corrosion inhibitors are explored in detail to highlight the key advancements and drawbacks towards the advantageous utilization of drugs as corrosion inhibitors.

Findings

Corrosion is a critical issue in numerous modern applications, and conventional strategies of corrosion inhibition include the use of toxic and environmentally harmful chemicals. As greener alternatives, natural compounds like plant extracts, essential oils and biopolymers, as well as synthetic drugs, are highlighted in this review. In addition, the advantages and disadvantages of these compounds, as well as their effectiveness in preventing corrosion, are discussed in the review.

Originality/value

This survey stresses on the most recent abilities of natural and synthetic drugs as viable and sustainable, environmentally friendly solutions to the problem of metal corrosion, thus expanding the general knowledge of green corrosion inhibitors.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 April 2023

Priyanka Sakare and Saroj Kumar Giri

The purpose of this paper was to study the color change kinetics of lac dye in response to aldehydes, carbon dioxide and other food spoilage metabolites for its potential…

Abstract

Purpose

The purpose of this paper was to study the color change kinetics of lac dye in response to aldehydes, carbon dioxide and other food spoilage metabolites for its potential application in intelligent food packaging.

Design/methodology/approach

UV–Vis spectroscopy was used to study the color change of dye solution. Ratio of absorbance of dye solution at 528 nm (peak of ionized form) to absorbance at 488 nm (peak of unionized form) was used to study the color change. Color change kinetics was studied in terms of change in absorbance ratio (A528/A488) with time using zero and first-order reaction kinetics. Lac dye-based indicator was prepared to validate the result of study for monitoring quality of strawberries.

Findings

Lac dye was orange-red in acidic medium and purple in alkaline medium. Color change of dye in response to benzaldehyde followed zero-order reaction kinetics, whereas for carbon dioxide first-order model was found best. No color change of dye solution was observed for alcohols, ketones and sulfur compounds. In the validation part, the color of the indicator label changed from purple to orange when the strawberries spoiled.

Originality/value

The study expands application area for lac dye as sensing reagent in intelligent food packaging for spoilage or ripeness detection of fruits and vegetables.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 December 2022

Fatimah A.M. Al-Zahrani

The purpose of this study aims to synthesize a novel donor–acceptor dye based on phenothiazine as a donor (D) and nonconjugated spacer was devised and synthesized by condensing of…

Abstract

Purpose

The purpose of this study aims to synthesize a novel donor–acceptor dye based on phenothiazine as a donor (D) and nonconjugated spacer was devised and synthesized by condensing of 2,2'-(1H-indene-1,3(2H)-diylidene) dimalononitrile with aldehyde and the practical synthesis methodology as given in Scheme 1.

Design/methodology/approach

The prepared phenothiazine dye was systematically experimentally and theoretically examined and characterized using nuclear magnetic resonance spectroscopy (1H,13C NMR), Fourier-transform infrared spectroscopy (IR) and high-resolution mass spectrometry. Density functional theory (DFT) and time-dependent density functional theory DT-DFT calculations were implemented to determine the electronic properties of the new dye

Findings

The UV-Vis absorption and fluorescence spectroscopy of the synthesized dye was investigated in a variety of solvents with varying polarities to demonstrate positive solvatochromism correlated with intramolecular charge transfer (ICT). The probe’s quantum yields (Фf) are experimentally measured in ethanol, and the Stokes shifts are found to be in the 4846–9430 cm−1 range.

Originality/value

The findings depicted that the novel (D-π-A) chromophores may act as a significant factor in the organic optoelectronics.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 28 February 2023

O.A. Elhefnawy and A.A. Elabd

The purpose of this study is to prepare a new adsorbent activated carbon immobilized on polystyrene (ACPS) for uranium (VI) and thorium (IV) removal from an aqueous solution…

Abstract

Purpose

The purpose of this study is to prepare a new adsorbent activated carbon immobilized on polystyrene (ACPS) for uranium (VI) and thorium (IV) removal from an aqueous solution. Activated carbon (AC) was derived from biochar material by chemical activation to increase the active sites on its surface and enhance the adsorption capacity. Activated carbon (AC) was immobilized on polystyrene (PS) to improve the physical properties and facilitate separation from the working solution. A feasibility study for the adsorption of uranium (VI) and thorium (IV) on the new adsorbent (ACPS) has been achieved. Adsorption kinetics, isotherms, and thermodynamics models of the adsorption process were used to describe the reaction mechanism.

Design/methodology/approach

Activated carbon was synthesized from biochar charcoal by 2 M H2SO4. Activated carbon was immobilized on the pretreatment polystyrene by hydrothermal process forming new adsorbent (ACPS). Characterization studies were carried out by scanning electron microscope, energy-dispersive X-ray spectrometer, infrared spectroscopy and X-ray diffraction techniques. Different factors affect the adsorption process as pH, contact time, solid/liquid ratio, initial concentration and temperature. The adsorption mechanism was explained according to kinetic, isothermal and thermodynamic studies. Also, the regeneration of spent ACPS was studied.

Findings

The experimental results showed that pH and equilibrium time of the best adsorption were 6.0 and 60 min for U(VI), 4.0 and 90 min for Th(IV), (pHPZC = 3.4). The experimental results fit well with pseudo-second order, Freundlich and Dubinin–Radushkevich models proving the chemisorption and heterogenous adsorption reaction. Adsorption thermodynamics demonstrated that the adsorption process is exothermic and has random nature of the solid/liquid interface. In addition, the regeneration of spent ACPS research showed that the adsorbent has good chemical stability. According to the comparative study, ACPS shows higher adsorption capacities of U(VI) and Th(IV) than other previous bio-adsorbents.

Originality/value

This study was conducted to improve the chemical and physical properties of bio-charcoal purchased from the local market to activated carbon by hydrothermal method. Activated carbon was immobilized on polystyrene forming new adsorbent ACPS for eliminating U(VI) and Th(IV) from aqueous solutions.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 April 2024

Hang Jia, Zhiming Gao, Shixiong Wu, Jia Liang Liu and Wenbin Hu

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Abstract

Purpose

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Design/methodology/approach

This study investigated the electrochemical characteristics of Q235 steel with and without MCI by polarization curve and electrochemical impedance spectroscopy. Besides, the surface composition of Q235 steel under different environments was analyzed by X-ray photoelectron spectroscopy. In addition, the migration characteristic of MCI and the adsorption behavior of MCI under cathodic polarization were studied using Raman spectroscopy.

Findings

Diethanolamine (DEA) and N, N-dimethylethanolamine (DMEA) can inhibit the increase of Fe(II) in the oxide film of Q235 steel under cathodic polarization. The adsorption stability of DMEA film was higher under cathodic polarization potential, showing a higher corrosion inhibition ability. The corrosion inhibition mechanism of DEA and DMEA under cathodic polarization potential was proposed.

Originality/value

The MCI has a broad application prospect in the repair of damaged reinforced concrete due to its unique migratory characteristics. The interaction between MCIs, rebar and concrete with different compositions has been studied, but the passivation behavior of the steel interface in the presence of both the migrating electric field and corrosion inhibitors has been neglected. And it was investigated in this paper.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 April 2024

Bo Zhang, Yuqian Zheng, Zhiyuan Cui, Dongdong Song, Faqian Liu and Weihua Li

The impact of rolling on the performance of micro arc oxidation (MAO) coatings on ZM5 alloy has been underreported. The purpose of this study is to explore the correlation between…

Abstract

Purpose

The impact of rolling on the performance of micro arc oxidation (MAO) coatings on ZM5 alloy has been underreported. The purpose of this study is to explore the correlation between rolling and the failure mechanism of MAO coatings in greater depth.

Design/methodology/approach

The influence of rolling on the corrosion and wear properties of MAO coating was investigated by phase structure, bond strength test (initial bond strength and wet adhesion), electrochemical impedance spectroscopy and wear test. The change of the surface electrochemical properties was studied by first principles analysis.

Findings

The results showed that the MAO coating on rolled alloy had better corrosion and wear resistance compared to cast alloy, although the structure and component content of two kinds of MAO coating are nearly identical. The difference in interface bonding between MAO coating and Mg substrate is the primary factor contributing to the disparity in performance between the two types of samples. Finally, the impact of the rolling process on MAO coating properties is explained through first-principle calculation.

Originality/value

A comprehensive explanation of the impact of the rolling process on MAO coating properties will provide substantial support for enhancing the application of Mg alloy anticorrosion.

Graphical abstract

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 June 2023

Fatma Altuntas

The textile sector is one of the sectors where competition is intense and requires the production of high-value-added products. This study aims to conduct patent analysis to find…

Abstract

Purpose

The textile sector is one of the sectors where competition is intense and requires the production of high-value-added products. This study aims to conduct patent analysis to find the technology status, recent trends, applications and technological evaluations of protective textile technologies in practice.

Design/methodology/approach

More than 36,840 patent documents related to protective textile technologies are available for researchers, patent examiners and patent researchers. Patent analysis is conducted to report the technology status, recent trends and applications of protective textile technologies. This analysis provides insights into the possible future directions of protective textile technologies in practice. Additionally, association rule mining (ARM) is performed to find the hidden patterns among protective textile technologies.

Findings

The development of protective textile technologies is revealed by the technology evaluation in this study. In addition, the sub-technology classes affecting protective textile technologies are examined using the cooperative patent classification (CPC) codes of the patent documents. Technology status and recent trends of protective textile technologies are provided in detail. The results of this study show that (1) protective textile technologies are constantly being developed, (2) the working areas of medical protective textiles are increasing, (3) there are frequent studies on fabric structures for saving lives within the framework of human needs and (4) there are four technology classes, namely A41D, Y10T, B32B and A62B impacting the other technology classes related to textile technologies such as D10B, Y10T, F41H, A62D, D04H, Y10S and D10B.

Originality/value

To have a competitive advantage in the marketplace, evaluation of textile technologies is critical in developing “functionalized” and “technologized” textile products. In particular, evaluating technologies in developing protective textile products is extremely important to meet customer demands and present competitive products in the market. Examining these patents for technology developers, decision-makers and policymakers is an urgent and necessary job. However, studies examining the development of protective textile technologies with patent analysis are very limited in the literature. To fill this gap, technology status, recent trends and applications of protective textile technologies are reported based on patent analysis and ARM in this study.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 6 March 2024

Ahmed EL Hana, Ahmed Hader, Jaouad Ait Lahcen, Salma Moushi, Yassine Hariti, Iliass Tarras, Rachid Et Touizi and Yahia Boughaleb

The purpose of the paper is to conduct a numerical and experimental investigation into the properties of nanofluids containing spherical nanoparticles of random sizes flowing…

Abstract

Purpose

The purpose of the paper is to conduct a numerical and experimental investigation into the properties of nanofluids containing spherical nanoparticles of random sizes flowing through a porous medium. The study aims to understand how the thermophysical properties of the nanofluid are affected by factors such as nanoparticle volume fraction, permeability of the porous medium, and pore size. The paper provides insights into the behavior of nanofluids in complex environments and explores the impact of varying conditions on key properties such as thermal conductivity, density, viscosity, and specific heat. Ultimately, the research contributes to the broader understanding of nanofluid dynamics and has potential implications for engineering and industrial applications in porous media.

Design/methodology/approach

This paper investigates nanofluids with spherical nanoparticles in a porous medium, exploring thermal conductivity, density, specific heat, and dynamic viscosity. Studying three compositions, the analysis employs the classical Maxwell model and Koo and Kleinstreuer’s approach for thermal conductivity, considering particle shape and temperature effects. Density and specific heat are defined based on mass and volume ratios. Dynamic viscosity models, including Brinkman’s and Gherasim et al.'s, are discussed. Numerical simulations, implemented in Python using the Langevin model, yield results processed in Origin Pro. This research enhances understanding of nanofluid behavior, contributing valuable insights to porous media applications.

Findings

This study involves a numerical examination of nanofluid properties, featuring spherical nanoparticles of varying sizes suspended in a base fluid with known density, flowing through a porous medium. Experimental findings reveal a notable increase in thermal conductivity, density, and viscosity as the volume fraction of particles rises. Conversely, specific heat experiences a decrease with higher particle volume concentration.xD; xA; The influence of permeability and pore size on particle volume fraction variation is a key focus. Interestingly, while the permeability of the medium has a significant effect, it is observed that it increases with permeability. This underscores the role of the medium’s nature in altering the thermophysical properties of nanofluids.

Originality/value

This paper presents a novel numerical study on nanofluids with randomly sized spherical nanoparticles flowing in a porous medium. It explores the impact of porous medium properties on nanofluid thermophysical characteristics, emphasizing the significance of permeability and pore size. The inclusion of random nanoparticle sizes adds practical relevance. Contrasting trends are observed, where thermal conductivity, density, and viscosity increase with particle volume fraction, while specific heat decreases. These findings offer valuable insights for engineering applications, providing a deeper understanding of nanofluid behavior in porous environments and guiding the design of efficient systems in various industrial contexts.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 24 April 2024

Ali Hassanzadeh, Ebrahim Ghorbani-Kalhor, Khalil Farhadi and Jafar Abolhasani

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Abstract

Purpose

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Design/methodology/approach

Sodium silicate is adopted as a substrate for GO and AgNPs with positive charge are used as modifiers. The synthesized nanocomposite is characterized by FTIR, FESEM, EDS, BET and XRD techniques. Then, some of the most effective parameters on the removal of CR and MB dyes such as solution pH, sorbent dose, adsorption equilibrium time, primary dye concentration and salt effect are optimized using the spectrophotometry technique.

Findings

The authors successfully achieved notable maximum adsorption capacities (Qmax) of CR and MB, which were 41.15 and 37.04 mg g−1, respectively. The required equilibrium times for maximum efficiency of the developed sorbent were 10 and 15 min for CR and MB dyes, respectively. Adsorption equilibrium data present a good correlation with Langmuir isotherm, with a correlation coefficient of R2 = 0.9924 for CR and R2 = 0.9904 for MB, and kinetic studies prove that the dye adsorption process follows pseudo second-order models (CR R2 = 0.9986 and MB R2 = 0.9967).

Practical implications

The results showed that the proposed mechanism for the function of the developed sorbent in dye adsorption was based on physical and multilayer adsorption for both dyes onto the active sites of non-homogeneous sorbent.

Originality/value

The as-prepared nano-adsorbent has a high ability to remove both cationic and anionic dyes; moreover, to the high efficiency of the adsorbent, it has been tried to make its synthesis steps as simple as possible using inexpensive and available materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 372