Search results

21 – 30 of 331
Article
Publication date: 5 January 2015

Ghodrat Ebadi, Aida Mojaver, Sachin Kumar and Anjan Biswas

The purpose of this paper is to discuss the integrability studies to the long-short wave equation that is studied in the context of shallow water waves. There are several…

Abstract

Purpose

The purpose of this paper is to discuss the integrability studies to the long-short wave equation that is studied in the context of shallow water waves. There are several integration tools that are applied to obtain the soliton and other solutions to the equation. The integration techniques are traveling waves, exp-function method, G′/G-expansion method and several others.

Design/methodology/approach

The design of the paper is structured with an introduction to the model. First the traveling wave hypothesis approach leads to the waves of permanent form. This eventually leads to the formulation of other approaches that conforms to the expected results.

Findings

The findings are a spectrum of solutions that lead to the clearer understanding of the physical phenomena of long-short waves. There are several constraint conditions that fall out naturally from the solutions. These poses the restrictions for the existence of the soliton solutions.

Originality/value

The results are new and are sharp with Lie symmetry analysis and other advanced integration techniques in place. These lead to the connection between these integration approaches.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 April 2020

Abdul-Majid Wazwaz

The purpose of this paper is to introduce a variety of new completely integrable Calogero–Bogoyavlenskii–Schiff (CBS) equations with time-dependent coefficients. The author…

Abstract

Purpose

The purpose of this paper is to introduce a variety of new completely integrable Calogero–Bogoyavlenskii–Schiff (CBS) equations with time-dependent coefficients. The author obtains multiple soliton solutions and multiple complex soliton solutions for each of the developed models.

Design/methodology/approach

The newly developed models with time-dependent coefficients have been handled by using the simplified Hirota’s method. Moreover, multiple complex soliton solutions are derived by using complex Hirota’s criteria.

Findings

The developed models exhibit complete integrability, for specific determined functions, by investigating the compatibility conditions for each model.

Research limitations/implications

The paper presents an efficient algorithm for handling integrable equations with analytic time-dependent coefficients.

Practical implications

The work presents new integrable equations with a variety of time-dependent coefficients. The author showed that integrable equations with time-dependent coefficients give real and complex soliton solutions.

Social implications

This study presents useful algorithms for finding and studying integrable equations with time-dependent coefficients.

Originality/value

The paper gives new integrable CBS equations which appear in propagation of waves and provide a variety of multiple real and complex soliton solutions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2023

Suheil Khuri

The aim of this study is to offer a contemporary approach for getting optical soliton and traveling wave solutions for the Date–Jimbo–Kashiwara–Miwa equation.

30

Abstract

Purpose

The aim of this study is to offer a contemporary approach for getting optical soliton and traveling wave solutions for the Date–Jimbo–Kashiwara–Miwa equation.

Design/methodology/approach

The approach is based on a recently constructed ansätze strategy. This method is an alternative to the Painleve test analysis, producing results similarly, but in a more practical, straightforward manner.

Findings

The approach proved the existence of both singular and optical soliton solutions. The method and its application show how much better and simpler this new strategy is than current ones. The most significant benefit is that it may be used to solve a wide range of partial differential equations that are encountered in practical applications.

Originality/value

The approach has been developed recently, and this is the first time that this method is applied successfully to extract soliton solutions to the Date–Jimbo–Kashiwara–Miwa equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 January 2015

Zhenhui Xu and Hanlin Chen

– The purpose of this paper is to reveal the dynamical behavior of higher dimensional nonlinear wave by searching for the multi-wave solutions to the (3+1)-D Jimbo-Miwa equation.

Abstract

Purpose

The purpose of this paper is to reveal the dynamical behavior of higher dimensional nonlinear wave by searching for the multi-wave solutions to the (3+1)-D Jimbo-Miwa equation.

Design/methodology/approach

The authors apply bilinear form and extended homoclinic test approach to the (3+1)-D Jimbo-Miwa equation.

Findings

In this paper, by using bilinear form and extended homoclinic test approach, the authors obtain new cross-kink multi-soliton solutions of the (3+1)-dimensional Jimbo-Miwa equation, including the periodic breathertype of kink three-soliton solutions, the cross-kink four-soliton solutions, the doubly periodic breather-type of soliton solutions and the doubly periodic breather-type of cross-kink two-soliton solutions. It is shown that the extended homoclinic test approach, with the help of symbolic computation, provides an effective and powerful mathematical tool for solving higher dimensional nonlinear evolution equations in mathematical physics.

Research limitations/implications

The research manifests that the structures of the solution to higher dimensional nonlinear equations are diversified and complicated.

Originality/value

The methods used in this paper can be widely applied to the research of spatial and temporal characteristics of nonlinear equations in physics and engineering technology. These methods are also conducive for people to know objective laws and grasp the essential features of the development of the world.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 April 2015

Hanlin Chen, Zhenhui Xu and Zhengde Dai

The purpose of this paper is to reveal dynamical behavior of nonlinear wave by searching for the new breather soliton and cross two-soliton solutions of the fifth-order…

Abstract

Purpose

The purpose of this paper is to reveal dynamical behavior of nonlinear wave by searching for the new breather soliton and cross two-soliton solutions of the fifth-order Caudrey-Dodd-Gibbon (CDG) equation.

Design/methodology/approach

The authors apply bilinear form and extended homoclinic test approach to the fifth-order CDG equation.

Findings

In this paper, by using bilinear form and extended homoclinic test approach, the authors obtain new breather soliton and cross two-soliton solutions of the fifth-order CDG equation. It is shown that the extended homoclinic test approach, with the help of symbolic computation, provides an effective and powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.

Research limitations/implications

The research manifests that the structures of the solution to nonlinear equations are diversified and complicated.

Originality/value

The methods used in this paper can be widely applied to the research of spatial and temporal characteristics of nonlinear equations in physics and engineering technology. These methods are also conducive for people to know objective laws and grasp the essential features of the development of the world.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 November 2018

Lakhveer Kaur and Abdul-Majid Wazwaz

The purpose of this paper is to explore new reduced form of the (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili (BKP) equation by considering its bilinear equations…

Abstract

Purpose

The purpose of this paper is to explore new reduced form of the (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili (BKP) equation by considering its bilinear equations, derived from connection between the Hirota’s transformation and Bell polynomials.

Design/methodology/approach

Based on the bilinear form of new reduced form of the (3 + 1)-dimensional generalized BKP equation, lump solutions with sufficient and necessary conditions to guarantee analyticity and rational localization of the solutions are discovered. Also, extended homoclinic approach is applied to considered equation for finding solitary wave solutions.

Findings

A class of the bright-dark lump waves are fabricated for studying different attributes of (3 + 1)-dimensional generalized BKP equation and some new exact solutions including kinky periodic solitary wave solutions and line breathers periodic are also obtained by Following the extended homoclinic approach.

Research limitations/implications

The paper presents that the implemented methods have emerged as a promising and robust mathematical tool to manage (3 + 1)-dimensional generalized BKP equation by using the Hirota’s bilinear equation.

Practical implications

By considering important characteristics of lump and solitary wave solutions, one can understand the shapes, amplitudes and velocities of solitons after the collision with another soliton.

Social implications

The analysis of these higher-dimensional nonlinear wave equations is not only of fundamental interest but also has important practical implications in many areas of mathematical physics and ocean engineering.

Originality/value

To the best of the authors’ knowledge, the acquired solutions given in various cases have not been reported for new reduced form of the (3 + 1)-dimensional generalized BKP equation in the literature. These obtained solutions are advantageous for researchers to know objective laws and grab the indispensable features of the development of the mathematical physics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 September 2023

Abdul-Majid Wazwaz, Mansoor Alshehri and Samir A. El-Tantawy

This study aims to explore novel solitary wave solutions of a new (3 + 1)-dimensional nonlocal Boussinesq equation that illustrates nonlinear water dynamics.

Abstract

Purpose

This study aims to explore novel solitary wave solutions of a new (3 + 1)-dimensional nonlocal Boussinesq equation that illustrates nonlinear water dynamics.

Design/methodology/approach

The authors use the Painlevé analysis to study its complete integrability in the Painlevé sense.

Findings

The Painlevé analysis demonstrates the compatibility condition for the model integrability with the addition of new extra terms.

Research limitations/implications

The phase shifts, phase variables and Hirota’s bilinear algorithm are used to furnish multiple soliton solutions.

Practical implications

The authors also furnish a variety of numerous periodic solutions, kink solutions and singular solutions.

Social implications

The work formally furnishes algorithms for investigating several physical systems, including plasma physics, optical communications and oceans and seas, among others.

Originality/value

This paper presents an original work using a newly developed Painlevé integrable model, as well as novel and insightful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 May 2020

Ji-Huan He, Fei-Yu Ji and Hamid Mohammad-Sedighi

The purpose of this paper is to demonstrate that the numerical method is not everything for nonlinear equations. Some properties cannot be revealed numerically; an example is used…

Abstract

Purpose

The purpose of this paper is to demonstrate that the numerical method is not everything for nonlinear equations. Some properties cannot be revealed numerically; an example is used to elucidate the fact.

Design/methodology/approach

A variational principle is established for the generalized KdV – Burgers equation by the semi-inverse method, and the equation is solved analytically by the exp-function method, and some exact solutions are obtained, including blowup solutions and discontinuous solutions. The solution morphologies are studied by illustrations using different scales.

Findings

Solitary solution is the basic property of nonlinear wave equations. This paper finds some new properties of the KdV–Burgers equation, which have not been reported in open literature and cannot be effectively elucidated by numerical methods. When the solitary solution or the blowup solution is observed on a much small scale, their discontinuous property is first found.

Originality/value

The variational principle can explain the blowup and discontinuous properties of a nonlinear wave equation, and the exp-function method is a good candidate to reveal the solution properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 March 2023

Abdul-Majid Wazwaz, Haifa A. Alyousef and Samir El-Tantawy

This study aims to propose an extended (3 + 1)-dimensional integrable Kadomtsev–Petviashvili equation characterized by adding three new linear terms.

Abstract

Purpose

This study aims to propose an extended (3 + 1)-dimensional integrable Kadomtsev–Petviashvili equation characterized by adding three new linear terms.

Design/methodology/approach

This study formally uses Painlevé test to confirm the integrability of the new system.

Findings

The Painlevé analysis shows that the compatibility condition for integrability does not die away by adding three new linear terms with distinct coefficients.

Research limitations/implications

This study uses the Hirota's bilinear method to explore multiple soliton solutions where phase shifts and phase variable are explored.

Practical implications

This study also furnishes a class of lump solutions (LSs), which are rationally localized in all directions in space, using distinct values of the parameters via using the positive quadratic function method.

Social implications

This study also shows the power of the simplified Hirota’s method in handling integrable equations.

Originality/value

This paper introduces an original work with newly developed Painlevé integrable model and shows new useful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2017

Sapna Pandit, Ram Jiwari, Karan Bedi and Mehmet Emir Koksal

The purpose of this study is to develop an algorithm for approximate solutions of nonlinear hyperbolic partial differential equations.

Abstract

Purpose

The purpose of this study is to develop an algorithm for approximate solutions of nonlinear hyperbolic partial differential equations.

Design/methodology/approach

In this paper, an algorithm based on the Haar wavelets operational matrix for computational modelling of nonlinear hyperbolic type wave equations has been developed. These types of equations describe a variety of physical models in nonlinear optics, relativistic quantum mechanics, solitons and condensed matter physics, interaction of solitons in collision-less plasma and solid-state physics, etc. The algorithm reduces the equations into a system of algebraic equations and then the system is solved by the Gauss-elimination procedure. Some well-known hyperbolic-type wave problems are considered as numerical problems to check the accuracy and efficiency of the proposed algorithm. The numerical results are shown in figures and Linf, RMS and L2 error forms.

Findings

The developed algorithm is used to find the computational modelling of nonlinear hyperbolic-type wave equations. The algorithm is well suited for some well-known wave equations.

Originality/value

This paper extends the idea of one dimensional Haar wavelets algorithms (Jiwari, 2015, 2012; Pandit et al., 2015; Kumar and Pandit, 2014, 2015) for two-dimensional hyperbolic problems and the idea of this algorithm is quite different from the idea for elliptic problems (Lepik, 2011; Shi et al., 2012). Second, the algorithm and error analysis are new for two-dimensional hyperbolic-type problems.

Details

Engineering Computations, vol. 34 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

21 – 30 of 331